PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 58 | 2 |

Tytuł artykułu

Optimization of growth conditions for xylanase production by Aspergillus niger in solid state fermentation

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The objectives of the present study were isolation, identification and characterization of xylanase producing fungi, optimization of medium composition and cultural conditions for xylanase enzyme production using cheaper sources. The fungal strains were isolated from garden soil by serial dilution technique and Aspergillus niger was identified and isolated in pure form. In conformation screening by congo red test, based on the reddish zone of enzyme activity formation in oat spelt xylan agar plates, A. niger was selected and optimized for xylanase enzyme production in solid state fermentation using cheaper sources like wheat bran, rice bran, soya bran, ragi bran and saw dust. Maximum enzyme activity was observed in wheat bran (9.87 U/ml). The use of wheat bran as a major carbon source is particularly valuable because oat spelt xylan or birch wood xylan are more expensive. The effects of time course, incubation substrate, inoculum size, moisturizing agent, moisture content, temperature and volume of fermentation medium on the production of xylanase were studied. The maximum xylanase production (12.65 U/ml) was observed at optimized condition, incubation temperature of 28°C after 6 days of incubation period while minimum production (9.38 U/ml) at unoptimized condition. The maximum production of enzyme was found to be in wheat bran when the volume of fermentation medium was kept as 10 g/250 ml conical flasks, with mineral solution as moisturizing agent and moisture ratio 1:0.7. Thus the present study proved that the fungal strain A. niger used is highly potential and useful for xylanase production.

Wydawca

-

Rocznik

Tom

58

Numer

2

Opis fizyczny

p.125-130,fig.,ref.

Twórcy

autor
  • Sri Bhagawan Mahaveer Jain College, 18/3, 9th Main, Jayanagar 3rd block, Bangalore - 560011, India

Bibliografia

  • Alam M., I.G.G. Mohiuddin and M.M. Hoq. 1994. Production and characterization of thermostable xylanases by Thermomyces lanuginosus and Thermoascus aurantiacus grown on lignocelluloses. Enzyme Microbiol. Technol. 12: 34-45.
  • Archana A. and T. Satyanarayana. 1997. Xylanase production by thermophilic Bacillus licheniformis A99 in solid state fermentation. Enzyme Microbiol. Technol. 21: 12-17.
  • Bakri Y., P. Jacques and P. Thonart. 2003. Xylanase production by Penicillium canescens 10-10c in solid-state fermentation. Appl. Biochem. Biotechnol. 105-108: 737-747.
  • Bataillon M., A.P. Nunes Cardinali, N. Castillon and F. Duchiron. 2000. Purification and characterization of a moderately thermostable xylanase from Bacillus sp. strain SPS-0. Enzyme Microbiol. Technol. 26: 187-192.
  • Beg Q.K., B. Bhushan, M. Kapoor and G.S. Hoondal. 2000. Enhanced production of a thermostable xylanase from Streptomyces sp. QG-11-3 and its application in biobleaching of eucalyptus kraft pulp. Enzyme Microbiol. Technol. 27: 459-466.
  • Bhat M.K. and G.P. Hazlewood. 2001. Enzymology and other characteristics of cellulases and xylanases. In: Bedford MR, Partridge CC, (eds.). Enzymes in Farm Animal Nutrition, CAB International, Wallingford, UK. 38: 11-60.
  • Carmona E.C., Brochetto-Braga M.R., A.A. Pizzirani-Kleiner and J.A. Jorge. 1998. Purification and biochemical characterization of an endoxylanase from Aspergillus versicolor. FEMS Microbiol. Lett. 166: 311-315.
  • Cai-qin Liu, Qi-he Chen, Qian-jun Cheng, Jin-ling Wang and Guo-qing He. 2007. Effect of cultivating conditions on α-galactosidase production by a novel Aspergillus foetidus ZU-G1 strain in solid-state fermentation. J. Zhejiang Univ Sci. 8: 371-376.
  • Chivero E.T., A.N. Mutukumira and R. Zvauya. 2001. Partial purification and characterization of a xylanase enzyme produced by a micro-organism isolated from selected indigenous fruits of Zimbabwe. Food Chem. 72: 179-85.
  • Damaso M.C.T., M.S. Almeida, E. Kurtenbach. O.B. Martins, N. Pereira, C.M.M.C. Andrade and R.M. Albano. 2003. Optimized expression of a thermostable xylanase from Thermomyces lanuginosus in Pichia pastoris. Appl. Environ. Microbiol. 69: 6064-6072.
  • Deschamps F. and M.C. Huet. 1985. Xylanase production in solid-state fermentation: A study of its properties. Appl. Microbiol. Biotechnol. 22: 177-180.
  • Dhillon A., J.K. Gupta, B.M. Jauhari and S. Khanna. 2000. A cellulase-poor, thermostable, alkalitolerent xylanase produced by Bacillus circulans AB 16 grown on rice straw and its application inbiobleaching of eucalyptus pulp. Bioresour. Technol. 73: 273-277.
  • Duarte M.C.T., E.P. Portugal, A. Ponezi, M.A. Bim, C.V. Taghari and T.T. Franco. 1999. Production and purification of alkaline xylanases. Bioresour. Technol. 68: 19-53.
  • Ferreira G.L., C.G. Boer and R.M. Peralta. 1999. Production of xylanolytic enzymes by Aspergillus tamarii in solid state fermentation. FEMS Microbiol. Lett. 173: 335-39.
  • Fujimoto H.T., S.L. Wang, T. Takizawa, H. Hidaka, S. Murao and M. Arai. 1995. Purification and properties of three xylanases from Aspergillus aculeatus. Biosci. Biotechnol. Biochem. 59: 538-540.
  • Gawande P.V. and M.Y. Kamat. 1999. Production of Aspergillus xylanase by lignocellulosic waste fermentation and its application. J. Appl. Microbiol. 87: 511-519.
  • Ghosh M., A. Das, A.K. Mishra and G. Nanda. 1993. Aspergillus sydowii MG 49 is a strong producer of thermostable xylanolytic enzymes. Enzyme Microbiol. Technol. 15: 703-709.
  • Haltrich D., B. Nidetzky, K.D. Kulbe, W. Steiner and S. Zupaneie. 1996. Production of fungal xylanases. Bioresour. Technol. 58: 137-161.
  • Hoq M.M. and W.D. Deckwer. 1995. Cellulase-free xylanase by thermophilic fungi: a comparison of xylanase production by two Thermomyces lanuginosus strains. Appl. Microbiol. Biotechnol. 43: 604-609.
  • Ikasari L. and D.A. Mitchell. 1994. Protease production by Rhizopus oligosporus in solid-state fermentation. Appl. Microbiol. Biotechnol. 10: 320-324.
  • Judith L.S.L. and P.J. Nei. 2002. Influence of some sugars on xylanase production by Aspergillus awamori in solid state fermentation. Brazilian Arch. Biol. Technol. 45: 431-437.
  • Kadowaki M.K., C.G.M. Souza, R.C.G. Simao and R.M. Peralta. 1997. Xylanase production by Aspergillus tamarii. Appl. Biochem. Biotechnol. 66: 97-106.
  • Kalogeris E., P. Christakopoulos, D. Kekos and B.J. Macris. 1998. Studies on the solid-state production of thermostable endo-xylanases from Thermoascus aurantiacus: characterization of two isozymes. J. Biotechnol. 60: 155-163.
  • Kim J.H., S.C. Kim and S.W. Nam. 2000. Constitutive over expression of the endoxylanase gene in Bacillus suhtilis. J. Microbiol. Biotechnol. 10: 551-553.
  • Lenartovicz V., C.G.M. Souza, EG. Moreira and R.M. Peralta. 2002. Temperature affects the production of multiple xylanases by Aspergillus fumigatus. J. Basic. Microbiol. 42: 390-397.
  • Li Kiachang, P. Azadi, R. Collins, J. Tolan, J.S. Kim and K.E.L. Eriksson. 2000. Relationships between activities of xylanases and xylan structures. Enzyme Microbiol. Technol. 27: 89-94
  • Maria L.G.S. and Samia M.T. 2006. Optimization of xylanase biosynthesis by Aspergillus japonicus isolated from a "Caatinga" area in the Brazilian state of Bahia. African. J. Biotechnol. 5: 1135-1141.
  • Miller G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31: 426-428.
  • Mimura H. and N. Shinichi. 1999. Physiological characteristics of Bacillus sp. Biocontrol. Sci., 4: 105-8.
  • Montenecourt B.S. and D.E. Veileigh. 1977. Preparation of mutants of Trichoderma reesei with enhanced cellulase production. Appl. Environ. Microbiol. 34: 777-784.
  • Pandey A. 1992. Recent process developments in solid-state fermentation. Process Biochem. 27: 12-17.
  • Pandey A., P. Selvakumar, C.R. Soccol and P. Nigam. 1999. Solid state fermentation for the production of industrial enzymes. Curt: Sci. 77: 149-162.
  • Pang Pei Kheng and C.O. Ibrahim. 2005. Xylanase production by a local fungal isolate, Aspergillus niger USM AI 1 via solid state fermentation using palm kernel cake(PKC)as substrate Songklanakarin J. Sci. Technol. 27: 325-336.
  • Pitt J. I. and R.A. Samson. 2000. Integration of Modern Taxonomic Methods for Penicillium and Aspergillus Classification. Pp. 83-113. R. A. Samson & J. I. Pitt (eds), Hardwood Academic Publishers.
  • Purkarthofer H., M. Sinner and W. Steiner. 1993a. Cellulase-free xylanase from Thermomyces lanuginosus: optimization of production in submerged and solid-state culture. Enzyme Microbiol. Technol. 15: 677-682.
  • Purkarthofer H., M. Sinner and W. Steiner. 1993b. Effect of shear rate and culture pH on the production of xylanase by Thermomyces lanuginosus. Biotechnol. Lett. 15: 405-401.
  • Raper K.B. and D.J. Fennell. 1965. The Genus Aspergillus. Williams, Wilkins, Baltimore.
  • Rahman A.K., N. Sugitani, M. Hatsu and K. Takamizawa. 2003. A role of xylanase, α-L-arabinofuranosidase, and xylosidase in xylan degradation. Can. J. Microbiol., 49: 58-64.
  • Senthilkumar S.R., B. Ashokkumar, K. Chandra Raj and P. Gunasekaran. 2005. Optimization of medium composition for alkali-stable xylanase production by Aspergillus fischeri Fxn 1 in solid-state fermentation using central composite rotary design. Bioresour. Technol. 96: 1380-1386.
  • Seyis I. and N. Aksoz. 2003. Determination of some physiological factors affecting xylanase production from Trichoderma harziamtm 1073 D3. New Microbiol. 26: 75-81.
  • Sonia K.G., B.S. Chadha and H.S. Saini. 2005. Sorghum straw for xylanase hyper-production by Thermomyces lanuginosus (D2W3) under solid state fermentation. Bioresour Technol. 96: 1561-1569.
  • Subramaniyan S. and P. Prema. 2002. Bio/Technology of microbial xylanases: enzymology, molecular biology, and application. Crit. Rev. Biotechnol. 22: 33-64.
  • Teater R.M. and P.J. Wood. 1982. Use of congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43: 777-780.
  • Viikari L, A. Kantelinen, J. Sundqvist and M. Linko. 2001. Xylanases in bleaching from an idea to the industry. FEMS Microbiol. Rev. 13: 335-350.
  • Wong K.K.Y., L.U.L. Tan and J.N. Saddler. 1988. Multiplicity of xylanase in microorganisms' functions and applications. Microbiol. Rev. 52: 305-317.
  • Yaun Q. and M. Rugyu. 1999. Study on temperature oscillation in production of xylanase by Aspergillus niger. Beijing Hugagong Daxue Xuebao 26: 11-16.
  • Zychlinski A.W., J. Czakaj and S. Zukowska. 1994. Xylanase production by fungal strains in solid state fermentation. Bioresour Technol. 49: 13-16.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-9925cf75-6e91-4475-8ec7-8f98aeee146a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.