PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 17 | 1 |

Tytuł artykułu

Aerobic biodegradation of vinasse by a mixed culture of bacteria of the genus Bacillus: optimization of temperature, pH and oxygenation state

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of the study was to optimize the temperature, pH and oxygenation state for the aerobic biodegradation of vinasse using a mixed culture of thermo- and mesophilic bacteria of the genus Bacillus. At the initial stage of the study a series of experiments was performed in shake flasks over the temperature range of 30 to 65°C and an initial pH of the medium ranging between 5.40 (the pH of vinasse) and 9.5 in order to determine the optimal values of the two parameters (T = 58°C, pH = 8.35) and thus maximize the extent of COD reduction (60.88%). At the subsequent stage, with the optimal values of temperature and initial pH, batch biodegradation processes were conducted in an STR with aeration at 1.0 vvm and two stirrer speeds, 550 rpm and 900 rpm, which provided a reduction in COD of 77.56% and 76.48%, respectively. With 900 rpm, a concomitant rise in the biodegradation rate was observed. The extent of COD reduction increased to 85.37% when biodegradation was conducted at 58o C (optimal temperature) and a stirrer speed of 900 rpm, the pH being maintained at 8.35 throughout the process.

Wydawca

-

Rocznik

Tom

17

Numer

1

Opis fizyczny

p.101-112,fig.,ref.

Twórcy

  • Wroclaw University of Economics, Komandorska 118/120, 53-345 Wroclaw, Poland
autor
autor

Bibliografia

  • 1. THELASSO F., VAN DER BURGT J., O’FLAHERTY V., COLLERAN E. Large-scale anaerobic degradation of betaine. J. Chem. Technol. Biot. 74, 1176, 1999.
  • 2. CIBIS E., ZMACZYŃSKI K. Characterisation of vinasse and utilisation of the nutrients included there by fodder yeasts. Przem. Ferm. Owoc.-Warz. 34 (3), 6, 1990 [In Polish].
  • 3. SHEEHAN G. J., GREENFIELD P. F. Utilisation, treatment and disposal of distillery wastewater. Water Res. 14 (3), 257, 1980.
  • 4. KUMIDER J. Some problems of the rational utilisation of waste arising during processing of fermented products (1). Przem. Ferm. Owoc.-Warz. 40 (11), 11, 1996 [In Polish].
  • 5. NGUYEN M. H. Alternatives to spray irrigation of starch waste based distillery effluent. J. Food Eng. 60, 367, 2003.
  • 6. MAIORELLA B. L., BLANCH H. W., WILKE C. R. Distillery effluent treatment and byproduct recovery. Process Biochem. 18, 5, 12, 1983.
  • 7. JIMENEZ A. M., BORJA R., MARTIN A. Aerobic-anaerobic biodegradation of beet molasses alcoholic fermentation wastewater. Process Biochem. 38, 1275, 2003.
  • 8. WILKIE A. C., RIEDESEL K. J., OWENS J. M. Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass Bioenerg. 19, 63, 2000.
  • 9. HARADA H., UEMURA S., CHEN A.-C., JAYADEVAN J. Anaerobic treatment of a recalcitrant distillery wastewater by a thermophilic UASB reactor. Bioresource Technol. 55 (3), 215, 1996.
  • 10. BORJA R., SANCHEZ E., MARTIN A., JIMENEZ A. M. Kinetic behaviour of waste tyre rubber as microorganism in an anaerobic digester treating cane molasses distillery slops. Bioprocess Eng. 16, 17, 1996.
  • 11. LAPARA T. M., ALLEMAN J. E. Thermophilic aerobic biological wastewater treatment. Water Res. 33 (4), 895, 1999.
  • 12. CIBIS E. Aerobic biodegradation of starch stillages from rural distilleries by means of mixed culture of thermo- and mesophilic bacteria of the genus Bacillus.; Prace Naukowe Akademii Ekonomicznej im. Oskara Langego we Wrocławiu, vol. 1028, 1, 2004 [In Polish].
  • 13. Handbuch der photometrischen Betriebsanalytik; Dr. Lange, Februar 2000, BDB 079, 2000.
  • 14. OGORODNIK S. T., STUPAKOVA R. K. Determination of glycerol in wine. Vinodelje, Vinogradstvo SSSR. 4, 26, 1981 [In Russian].
  • 15. REBELEIN H. Simplified procedure of glycerol and butanediol determination in wine. Zeitschrift für Lebensm. Unters.-Forsch. 105, 296, 1957 [In German].
  • 16. SŁAWIŃSKI P., MATYKA S., GAŁAŻEWSKA E. The method of betaine determination in yeast effluents, decoction and biopulp. Przem. Spoż. 29 (8-9), 348, 1975 [In Polish].
  • 17. SÜRÜCÜ G. A., ENGELBRECHT R. S., CHIAN E. S. K. Thermophilic microbiological treatment of high strength wastewaters with simultaneous recovery of single cell protein. Biotechnol. and Bioeng. 17, 1639, 1975.
  • 18. LAPARA T. M., NAKATSU C. H., PANTEA L. M., ALLEMAN J. E. Stability of the bacterial communities supported by a seven-stage biological process treating pharmaceutical wastewater as revealed by PCR-DGGE. Wat. Res. 36 (3), 638, 2002.
  • 19. LASIK M., NOWAK J. Thermophilic arobic biodegradation of food industry wastewater. Biotechnol. 3 (74), 98, 2006 [In Polish].
  • 20. LOLL U. Purification of concentrated organic wastewaters from the foodstuffs industry by means of aerobic-thermophilic degradation process. Prog. Wat. Tech. 8 (2/3), 373, 1976.
  • 21. SONNENLEITNER B., FIECHTER A. Bacterial diversity in thermophilic aerobic sewage sludge. II. Types of organisms and their capacities. Eur. J. Appl. Microbiol. Biotechnol. 18, 174, 1983.
  • 22. LAPARA T. M., NAKATSU C. H., PANTEA L. M., ALLEMAN J. E. Aerobic biological treatment of a pharmaceutical wastewater: effect of temperature on COD removal and bacterial community development. Wat. Res. 35 (18), 4417, 2001.
  • 23. COUILLARD D., ZHU S. Thermophilic aerobic process for the treatment of slaughterhouse effluents with protein recovery. Environ. Pollut. 79, 121, 1993.
  • 24. ZVAUYA R., PARAWIRA W., MAWADZA C. Aspect of aerobic thermophilic treatment of Zimbabwean traditional opaque-beer brewery wastewater. Bioresource Technol. 48 (4), 273, 1994.
  • 25. TRIPATHI C. R., ALLEN D. G. Comparison of mesophilic and thermophilic aerobic biological treatment in sequencing batch reactors treating bleached kraft pulp mill effluent. Water Res. 33 (3), 836, 1999.
  • 26. BEAUDET R., GAGNON C., BISAILLON J. G., ISHAQUE M. Microbial aspects of aerobic thermophilic treatment of swine waste. Appl. Environ. Microbiol. 56 (4), 971, 1990.
  • 27. LASIK M., NOWAK J., KENT C. A., CZARNECKI Z. Assessment of metabolic activity of single and mixed microorganism population assigned for potato wastewater biodegradation. Pol. J. Environ. Stud. 11 (6), 719, 2002.
  • 28. MALLADI B., INGHAM S.C. Thermophilic aerobic treatment of potato-processing wastewater. World J. Microbiol. Biotechnol. 9, 45, 1993.
  • 29. MCINTOSH K. B., OLESZKIEWICZ J. A. Volatile fatty acid production in aerobic thermophilic pre-treatment of primary sludge. Water Sci. Technol. 36 (11), 189, 1997.
  • 30. HENZE M., HARREMOËS P., LA COUR JANSEN J., ARVIN E. Wastewater Treatment: Biological and Chemical Processes, 3rd ed.; Springer-Verlag: Berlin, Heidelberg, 2002.
  • 31. PERTULLA M., KONRÁDSDÓTTIR M., PERE J., KRISTJÁNSSON J. K,. VIIKARI L. Removal of acetate from NSSC sulphite pulp mill condensates using thermophilic bacteria. Water Res. 25 (5), 599, 1991.
  • 32. BECKER P., KÖSTER D., POPOV M. N., MARKOSSIAN S., ANTRANIKIAN G., MÄRKL H. The biodegradation of olive oil and the treatment of lipid-rich wool scouring wastewater under aerobic thermophilic conditions. Water Res. 33 (3), 653, 1999.
  • 33. UGWUANYI J. O., HARVEY L. M., MCNEIL B. Effect of aeration rate and waste load on evolution of volatile fatty acids and waste stabilization during thermophilic aerobic digestion of model high strength agricultural waste. Bioresource Technol. 96 (6), 721, 2005.
  • 34. CIBIS E., KRZYWONOS M., MIŚKIEWICZ T. Aerobic biodegradation of potato slops under moderate thermophilic conditions: Effect of pollution load. Bioresource Technol. 97 (4), 679, 2006.
  • 35. CHU A., MAVINIC D. S., RAMEY W. D. KELLY H. G. A biochemical model describing volatile fatty acid metabolism in thermophilic aerobic digestion of wastewater sludge. Water Res. 30 (8), 1759, 1996.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-98a153db-2511-47cc-88ec-73678fd897f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.