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Mesolimbic dopamine pathways play a critical role in the behavioural effects of
cocaine in rodents. Nonetheless, rescarch has also demonstrated involvement of
S-hydroxytryptamine (5-HT; serotonin) transmission in these effects. The present
study investigated the ability of selective 5-HT,, receptor ligands and a 5-HT
reuptake inhibitor to substitute for or to alter (enhance or antagonise) the
discriminative stimulus effects of cocaine. Male Wistar rats were trained to
discriminate cocaine (10 mg/kg, ip.) from saline (i.p) in a two-choice,
water-reinforced fixed ratio (FR) 20 drug discrimination paradigm. In substitution
tests, the selective S-HT,. receptor agonist 3-(1,2,56-tetrahydro-4-pyridyl}
-S-propoxypyrrolo[3,2-b]pynﬁinc (CP 94253; 2.5—5 mg/kg, ip.) and the 5-HT
reuptake inhibitor fluoxetine (5—10 mg/kg, i.p.) elicited ca. 40 and 0% drug-lever
responding, respectively. In combination experiments, CP 94253 (2.5—5 mg/kg)}
given with submaximal doses of cocaine (0.3—2.5 mg,fkg} produced a leftward shift in
the cecaine dose-response curve; pretreatment with CP 94253 (5 mg/kg) prior to
a dose of cocaine (2.5 mg/kg) which elicited lower than 40% drug-lever responding,
caused full substitution. Fluoxetine (5 and 10 mg/kg) given in combination with
a submaximal dose of cocaine (2.5 mg/kg) produced a 100% drug-lever responding.
Pretreatment with the 5-HT,, receptor antagonists N-[4-methoxy-3-(4-methyl-
-l-pipcmzinyl)phcnyi]-2’-mcthy?-4'-{5-methyl-[1,2,4]oxadiazol-3-yl]-l,l’-biphcny]-4—
carboxamide (GR 127935; 0.5—5 mg/kg, sc) and 3{3-dimethylamino)-propyl)-
-4-hydroxy-N-[4-{(4-pyridinyl}-phenyl]benzamide (GR 55562; 1 mg/kg, s.c.) failed to
modulate the dnse—eﬂyect curve for cocaine (0.6—5 mg/kg). On the other hand, GR
127935 (5 mg/kg) and GR 55562 (1 mg/kg) significantly attenuated the enhancement
of cocaine discrimination evoked by a combination of CP 94253 (5 mg/kg) or
fluoxetine (5 mg/kg) and cocaine (2.5 mg/kg). These results indicate that 5-HT ,
receptors are not directly involved in the cocaine-induced discriminative stimuli in
rats. On the other hand, they indicate that pharmacological stimulation of 5-HT
receptors — that also seem to be a target for fluoxetine-mediated increase in s-HT
neurotransmission — can enhance the overall effects of cocaine.

Key words: cocaine, CP 94253, fluoxetine, GR 127935, GR 55562, discriminative stimulus
effects, rats.
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INTRODUCTION

It is well established that cocaine preferentially affects brain dopamine
systems. In fact, cocaine elevates extracellular concentrations of the
neurotransmitter via inhibition of dopamine reuptake (1) and such increases
appear mainly in a terminal region of the mesolimbic dopamine pathway, i.e.
the nucleus accumbens (2). A vast body of evidence reveals that the latter brain
structure is closely related to locomotor, sensitising, reinforcing and
discriminative stimulus properties of cocaine (3, 4, 5).

Apart from its role in dopamine neurotransmission, cocaine also inhibits
the reuptake of 5-hydroxytryptamine (5-HT; serotonin) (6). Recent findings
indicate an involvement of 5-HT neurotransmission in the behavioural effects
induced by cocaine. Thus, 5-HT neurotoxin or 53-HT synthesis inhibitors have
been demonstrated to potentiate the hyperactivity produced by cocaine (7, 8).
Similarly, in cocaine self-administration procedures lesions of the 5-HT system
and drugs increasing 5-HT neurotransmission (e.g. tryptophan, fluoxetine) have
been shown to enhance and decrease, respectively, the drug-induced reinforcing
effects (9, 10, 11). Interestingly, selective 5-HT reuptake inhibitors can either
enhance or antagonise the interoceptive effects in cocaine discrimination (12,
13, 14, 15, 16).

Regarding the 14 recently described 5-HT receptors (17, 18), several findings
suggest a role for 5-HT,p receptors in the effects of cocaine: 1) the transcript
and protein for 5-HT,p receptors are located in different brain structures
including the dopamine mesolimbic system (19, 20); 2) activation of 5-HT,g
receptors increases basal (21, 22) and cocaine-stimulated (23) extracellular
dopamine concentrations in the nucleus accumbens; 3) agonists of 5-HT,g
receptors enhance locomotor (24), sensitising (24) and reinforcing effects of
cocaine (25, 26); they also engender a dose-dependent leftward shift in the
cocaine dose-response curve in a drug discrimination model (13, 16). On the
other hand, antagonists of 5-HT g receptors inhibit cocaine-induced locomotor
hyperactivity (24, 27).

The present study focussed on a potential interaction between 5-HT,g
receptors and the 5-HT reuptake mechanism in the discriminative stimulus
effects of cocaine. In this rat operant behavioural model we tested the
hypothesis about whether new and more selective 5-HT 5 receptor ligands, i.e.
the agonist 3-(1,2,5,6-tetrahydro-4-pyridyl)-5-propoxypyrrolo[3,2-b]pyridine
(CP 94253; (2R)), the antagonists N-[4-methoxy-3-(4-methyl-1-piperazinyl)
phenyl]-2’-methyl-4’-(5-methyl-[ 1,2,4]Joxadiazol-3-yl)-1,1>-biphenyl-4-carboxa-
-mide (GR 127935; (29) or 3-(3-dimethylamino)propyl)-4-hydroxy-N-[4-(4-
-pyridinyl)-phenyl]benzamide (GR 55562; (30), and the 5-HT reuptake
inhibitor fluoxetine (31) affected the discriminative stimulus effects of
cocaine.
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MATERIALS AND METHODS

Animals

The experiment was performed on male Wistar rats (280—300 g). The animals were housed in
groups of two to a cage at a room temperature of 20+ 1°C on a 12 h light/dark cycle (the light on
between 6.00—18.00 h). Although food (Bacutil pellets) was always available, the water that cach
animal received was restricted to the amount given during training sessions in the operant
chambers, after test sessions (15 min), and at weekends. All the experiments were carried out in
compliance with the Polish Animal Protection Bill of April 21, 1997, and with the National
Institutes of Health Guide for the Care and Use ol Laboratory Animals.

Drugs

The following drugs were used (in parentheses: pre-session injection times, route of injection,
suppliers): cocaine HCl (—15 min; ip; Merck, Germany), 3-(1,2,56-tetrahydro-4-pyridyl}
-5-propoxypyrrolo[ 3,2-b]pyridine (CP 94253; —30 min; ip.; Pfizer, USA), fluoxetine HCI (—45
min; ip; Eli Lilly & Co., USA), N-[4-methoxy-3-(4-methyl-1-piperazinyl)phenyl]-2"-methyl-
-4'-(5-methyl-[ 1,2, 4]oxadiazol-3-yl)-1,1"-biphenyl-4-carboxamide HCl (GR 127935, —60 min; s.c.;
Glaxoe Wellcome, UK) and 3-(3-dimethylamino)propyl)}-4-hydroxy-N-[4-(4-pyridinyl)phenyl]-
-benzamide HCl {GR 55562; — 60 min; s.c.; Tocris, UK). Cocaine, CP 94253, fluoxetine and GR
55562 were dissolved in saline, while GR 127935 was suspended in a 20% B-cyclodextrin (RBI,
USA). All the drugs were injected in a volume of 1 ml/kg.

Apparatus

Commercially available, two-lever operant chambers (Coulbourn Instruments, model E10-10;
USA) were used. Each chamber was equipped with a water dispenser mounted equidistant between
two response levers on one wall and contained in a light- and sound-attennating shell. Illumination
was provided by a 28-V house light; ventilation and masking noise were supplied by-a blower.
A computer was used to programme and record all the experimental events.

Discrimination procedure

Rats were trained to discriminate cocaine {10 mg/kg) from saline (0.9% NaCl). The drug or
saline were administered i.p. 15 min before daily {Monday-Friday) sessions (30 min). The initial
training ("errorless™ training) began under a fixed ratio (FR) 1 schedule of continuos water
reinforcement with only a stimulus-appropriate (drug or saline) lever presented. The ratio schedule
was increased until all the animals responded reliably under a FR 20 schedule for each
experimental condition. Hall the animals were reinforced for lefi-lever responses after drug
administration and for right-lever responses after saline. The conditions were reversed for the
remaining animals. To control possible development of position cues on the basis of olfactory
stimuli, a pseudorandom relationship was maintained between the lever programmed to deliver
reinforcement for each consecutive subject, run in the same experimental chamber (32). During that
phase of training, cocaine and saline were administered in nonsystematic order, and neither
training condition prevailed for more than three consecutive sessions.

When the responding stabilized on an FR 20 schedule, discrimination training started
with both levers presented simultaneously. The rats were required to respond on the
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stimulus-appropriate (correct} lever to obtain reinforcement (water); there were no programmed
consequences of responding on the incorrect lever. That phase of training continued until all the
animais fulfilled the criterion {an individual mean accuracy of at least 80% correct responses before
the first reinforcer during 10 consecutive sessions). After the rats acquired the cocaine-saling
discrimination, the training sessions were shortened from 30 to 15 min.

Test sessions were initiated once all the animals met the above-mentioned criterion, and were
conducted once or twice a week. Cocaine and saline sessions intervened between test sessions to
maintain discrimination accuracy. Only rats that met an 80% performance criterion during the
preceding cocaine and saline sessions were used in the tests. During the test sessions, the animals
were placed in chambers in the same manner as during training sessions. Upon completion of 20
responses on either lever, or after a session time (15 min) clapsed, a single reinforcer was delivered,
and the animals were removed from the chamber. In the home cages all the rats were allowed 15
min of free access 10 water.

Two pharmacological test manipulations were performed during the test sessions. In
substitution tests, the animals were tested for lever selection after administration of various doses of
the training drug or novel compounds. In combination tests, the rats were given a fixed dose of
a test drug before different doses of cocaine (0.6—10 mg/kg).

Data analysis

During training sessions, the accuracy (mean + S.E.M.) was defined as a ratio of correct
responses to total responses before the delivery of the first reinforcer; during the test sessions, the
performance (mean+S.E.M.) was expressed as a ratio of drug-lever responses to total responses
before the delivery of the first reinforcer. Response rates (responses per second), regarded as
a measure of behavioural disruption, were evaluated during the training and test sessions. For the
training sessions, the response rate (mean + S.E.M.) was calculated as a total number of responses
to either lever before completion of the first FR 20, divided by the number of minutes taken to
complete the FR. During the test sessions, the response rate {mean+S.E.M.) was calculated as
a total number of responses before completion of 20 responses on either lever, divided by the
number of minutes taken to complete the FR 20. Only the data from animals that completed the
FR 20 during the test sessions were used. Student's ¢-test for repeated measurements was used to
compare the percentage of cocaine-lever responding and response rates during the test sessions
with the corresponding values of either the previous cocaine sessions (substitution tests) or the test
dose of cocaine (combination tests). A two-way analysis of variance for repeated measurements was
used to determine whether the percentage of cocaine-lever responding and the response rates
observed during tests with several doses of cocaine in combination with either saline or the tested
drugs differed; to analyze each dose of cocaine separately, post-hoc comparisons were made with
Student’s r-test. A drug was considered 10 substitute fully for cocaine if at least 80% of the
responses were made to the cocaine-appropriate lever after a dose of that drug; similarly, complete
antagonism was said to occur when at most 20% of the responses were made on the drug lever
after pretreatment with a dose of a potential antagonist given in combination with cocaine, 10
mg/kg. The dose predicted to elicit a 50% drug-appropriate responding (ED,,) was calculated
using Litchfield and Wilcoxon’s methods (33).

RESULTS

All the rats (N = 26) used in the experiment developed the ability to
discriminate between cocaine and saline. The stimulus control of both the
training drug and saline injections was stable throughout the experiment.
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Cocaine (10 mg/kg) and saline produced approximately 99 and 6%
drug-lever responding, respectively. The training dose of cocaine did not affect
the response rates (cocaine 1.0+ 0.2 responses/s, saline: 0.85+40.25 responses/s;
results not shown; N = 26).

In substitution studies, cocaine (0.3—10 mg/kg) induced a dose-dependent
increase in the drug-lever responding (13—99%; Figs. 1, 2, 3).

Fig. 1. Dosc-response curves for
cocaine following pretreatment with
saline or CP 94253 (2.5—5 mg/kg) in
rats trained to discriminate cocaine
(10 mg/kg) from saline. For
comparison, effects of saline (SAL) or
CP 94253 (CP; 2.5 and 5 mg/kg), given
alone, are shown. The upper panel
shows a percentage (mean+S.EM.)
of the cocaine-lever responding l

during the test session; the lower
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Given alone, CP 94253, 2.5 and 5 mg/kg, produced 40 and 36% of the
cocaine-lever responding, respectively. CP 94253 did not change the rats’
response rates (Fig. I). In combination tests, pretreatment with a fixed
dose of CP 94253 (2.5 or 5 mg/kg) enhanced cocaine discriminability
(Fq,78=3.93, P < 0.01 or F;4,=5.62, P < 0.01, respectively), with a leftward
shift of its dose-response curve (Fig. I, the upper panel) and a reduction in the
EDs, value for cocaine (Table I). The response rates were not altered after
a combination of CP 94253 (2.5 mg/kg)+ cocaine (F, 15 = 2.63, P > 0.05), or
CP 94253 (5 mg/kg) + cocaine (F; ¢4 = 2.02, P > 0.05) (Fig. 1, the lower panel).

Fluoxetine, 5 and 10 mg/kg, neither substituted for cocaine nor affected the
response rate of animals (Fig. 2, the upper panel). Given in combination with
cocaine (0.6—2.5 mg/kg), fluoxetine, 5 or 10 mg/kg, enhanced cocaine
discriminability (F, 30 = 7.37, P<0.001 or F; 30 = 3.37, P < 0.05, respectively),
with a leftward shift of its dose-response curve (Fig. 2, the upper panel)
and a reduction in the EDjs, value for cocaine (Table I). The response
rates were not changed following combined administration of fluoxetine,
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5 mg/kg+ cocaine (F, 3 = 1.01, P > 0.05) or of fluoxetine, 10 mg/kg + cocaine
(F3.30 = 0.79, P > 0.05) (Fig. 2, the lower panel).
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Fig. 2. Dose-response curves for
cocaine following saline or fluoxetine
(5—10 mg/kg) in rats trained te
discriminate cocaine (10 mg/kg) from
saline. For comparison, eflects of
saline (SAL) or fluoxetine (FLX; 5 and
10 mg/kg), given alone, are shown. See
Fig. 1 for further explanation. The
number of animals tested in each
freatment regimen: n = 6—14.

Pretreatment with GR 127935 (5 mg/kg) or GR 55562 (1 mg/kg) neither
affected cocaine discrimination (F,40 =107, P>005 or F,,, =203,
P > 0.05, respectively), nor modified its dose-effect curve (¥ig. 3) and the EDs,

Fig. 3. Dose-response
curves for cocaine
following saline, GR
127935 (0.5—5 mg/kg)
or GR 55562 (1 mg/kg)
in rats trained to
discriminate cocaine
{10 mg/kg) from saline.
For comparison, effects
of cocaine (COC;
10 mg/kg) given alone,
are shown. See Fig. [
for further explanation.
The number of
animals tested in each
treatment regimen:
n=6—12.
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value for cocaine (7able 1). A combination of GR 127935 (0.5 mg/kg) with
cocaine enhanced cocaine discrimination (F, 45 = 8.30, P < 0.001); however,
that pretreatment did not modify the EDs, value for cocaine (Table 1). The
response rates of animals were not affected after combined administration
of cocaine with GR 127935, 0.5 mg/kg (F;.40 = 0.77, P > 0.05), GR 127935,
5 mg/kg (Fy40=052, P>005 or GR 55562, 1 mg/kg (F;40 =0.34,
P > 0.05) (Fig. 3).

Following exposure to GR 127935 (5 mg/kg) or GR 55562 (1 mg/kg),
a significant reduction in the discriminative stimulus effects of combined
treatment with CP 94253 (5 mg/kg)+cocaine (1.25 mg/kg) or CP 94253
(5 mg/kg)+cocaine (2.5 mg/kg) — which evoked approximately 63 and 90%
drug-lever responses, respectively, — was observed (Fig. 4). Pre-exposure to
GR 127935 or GR 55562 did not affect the response rates (results not shown).

GR 127935 (5 mg/kg) or GR 55562 (1 mg/kg) — when used prior to
combined administration of fluoxetine (5 mg/kg)+cocaine (1.25 mg/kg) or
fluoxetine (5 mg/kg)+cocaine (2.5 mg/kg), which induced approximately 40
and 100% drug-lever responses, respectively, — significantly decreased the
cocaine discriminative effects (Fig. 5). Pre-exposure to GR 127935 or GR 55562
did not affect the response rates (results not shown).
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Fig. 4. Effects of GR 127935 (5 mg/kg) or GR 55562 (1 mg/kg) on the CP 94253 (5 mg/kg) + cocaine

(1.25 and 2.5 mg/kg)-lever responding in rats trained to discriminate cocaine (10 mg/kg) from

saline. The panel shows a percentage {mean+S8.E.M.) of the cocaine-lever responding during the

test session. The number of animals tested in each treatment regimen: n = 6—8. Asterisks indicate

significant difference in the % cocaine-lever responding between a 5-HT,, receptor antagonist and
saline (P < 0.05).
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PRETREATMENT:
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Fig. 5. Effects of GR 127935 (5 mg/kg) or GR 55562 (I mg/kg) on the fluoxetine

(5 mg/kg)+cocaine (1.25 and 2.5 mg/kg)-lever responding in rats trained to discriminate cocaine

(10 mg/kg) from saline. The panel shows a percentage {(meant S.E.M.) of the cocaine-lever

responding during the test session. The number of animals tested in each treatment regimen:

n = 6—9. Asterisks indicate significant difference in the % cocaine-lever responding between
a 5-HT,, receptor antagonist and saline (P < 0.05).

Table 1. The ED,, values for cocaine in rats pretreated with saline,
fluoxetine or 5-HT,, receptor ligands.

Pretreatment ED,, (mg/kg) P
Saline L.64 -—
Fluoxetine (5 mg/kg) 1.31 n.s.
Fluoxetine (10 mg/kg) 0.87 <005
CP 94253 (2.5 mg/kg) 098 ns.
CP 94253 (5 mg/kg) 0.42 < 0.01
GR 127935 (0.5 mg/kg) 1.38 n.s.
GR 127935 (5 mgfkg) 217 nas.
GR 55562 (1 mg/kg) 1.70 ns.

n.s. — not significanct



257

DISCUSSION

In line with some earlier findings, our results show that 5-HT potentiates
the dopamine-mediated discriminative stimulus effects of cocaine. In fact, we
found that fluoxetine, a drug which inhibits 5-HT uptake and elevates dialysate
5-HT levels in the brain (31), significantly enhanced the discriminative stimulus
effects of submaximal doses of cocaine and produced a leftward shift in its
dose-response curve, while when administered alone, fluoxetine did not
substitute for cocaine. These data are in agreement with the earlier studies of
Callahan and Cunningham (14, 16) and Herges and Taylor (34) who found that
fluoxetine in a dose range (4—10 mg/kg) similar to that used in our study
enhanced cocaine discrimination and locomotor activation, respectively. Such
potentiation was also observed in a drug discrimination model for another
selective 5-HT reuptake inhibitor, sertraline (13), but not for citalopram (13,
15). The latter drug was much less effective in rats (13), and even attenuated the
cocaine dose-response function in squirrel monkeys (15). The reason for such
a discrepancy in the effects of selective 5-HT reuptake inhibitors on cocaine
discrimination is not clear, but it is noteworthy that there exist some important
differences in the affinity for 5-HT and other monoamines uptake sites of these
drugs. Thus, in contrast to citalopram, fluoxetine and sertraline are less
selective for 5-HT neurotransmission since they show a moderate affinity for
the norepinephrine transporter site (35). Moreover, though none of these
selective 5-HT reuptake inhibitors binds to the dopamine transporter site,
fluoxetine and sertraline do enhance extracellular dopamine release (36). Both
these findings seem to be in agreement with some recent data showing full
substitution of selective norepinephrine reuptake inhibitors (37), as well as of
a dopamine releaser or a dopamine uptake inhibitor (12, 38) for cocaine
discrimination.

Both the selective 5-HT reuptake inhibitor fluoxetine and the selective
5-HT,p receptor agonist CP 94253 enhanced the discriminative stimulus effects
of cocaine. In fact, after pretreatment with 2.5 and 5 mg/kg of CP 94253,
a leftward shift in the cocaine dose-response curve and a significant reduction
(ie. 1.67 and 3.9 times, respectively) in the EDs, values for cocaine were
observed. However, in contrast to fluoxetine, CP 94253 alone weakly
substituted for cocaine. Both the fluoxetine- and the CP 94253-mediated
enhancement of cocaine discriminative stimulus effects seems to be specific,
since neither the inhibitor of 5-HT uptake nor the 5-HT,y receptor agonist
evoked any behavioural disruption in rats; on the other hand, a decrease — not
related to the dose used — in the rate of responding was observed.

The enhancement of cocaine discrimination by CP 94253 is also in line with
some other data on the influence of 5-HT,g receptor agonists on behavioural
effects of the psychostimulant. Actually, Callahan and Cunningham (14, 16)
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reported that RU 24969 and TFMPP, agonists of 5-HT ;4 and 5-HT /3¢
receptors, respectively, enhanced the discriminative stimulus effects of cocaine
and partly substituted (ca. 50—70%) for the psychostimulant in a drug
discrimination task. Furthermore, the latter agonists were found to enhance the
reinforcing effects of self-administered cocaine (26). A recent study from our
laboratory shows that both the locomotor activity effects and sensitisation to
cocaine were augmented by the 5-HT, receptor agonist CP 94253 (24).

The potentiating effects of both CP 94253 and fluoxetine on cocaine
discrimination were attenuated by GR 127935 and GR 55562, 5-HT ;g receptor
antagonists (29, 30, 39, 40). Although GR 127935 fails to discriminate between
5-HT,p and 5-HT,, receptors in binding studies (39), the 5-HT 5, p selectivity
of GR 55562 (30) suggests that activation of 5-HT,y receptors underlies our
above-mentioned effects of CP 94253 and fluoxetine. In line with the present
drug discrimination data, it was demonstrated that GR 127935 reversed the
effects of a 5-HT, agonist on cocaine locomotor behaviours (24). Interestingly,
the latter antagonist also attenuated the 5-HT,y receptor agonist-mediated
enhancement of the amphetamine (41) or ethanol self-administration (42) and
discrimination (43), both those behavioural effects depending on an increased
dopamine neurotransmission.

Our findings on CP 94253 and fluoxetine in the discriminative stimulus
effects of cocaine showed an interaction between 5-HT and dopamine
pathways, with a direct and indirect, respectively, stimulation of 5-HT,
receptors. Actually, it has been found that activation of 5-HT g receptors leads
to an increase in basal (21, 22) and cocaine-stimulated (23) extracellular
dopamine concentrations in the nucleus accumbens, a brain area involved in
cocaine discrimination (44). Similarly, fluoxetine has been found to stimulate
basal dopamine release; however, such an effect appears in the prefrontal cortex
only (36). Interestingly, recent microdialysis studies showed that the 5-HT-,
fluoxetine- or 5-HT,g receptor agonist-mediated increases in dopamine
extracellular release were reduced by co-perfusion with GR 127935 (45, 46)
which per-se did not affect brain dopamine metabolism (47). Since fluoxetine
and CP 94253 have no affinity for dopamine receptors or the dopamine
transporter site (29, 35), direct stimulation of dopamine neurotransmission by
these drugs can be excluded. In line with the above observation, neither SCH
23390 nor haloperidol, dopamine D,-like and D,-like receptor antagonists,
respectively, blocked the partial subsitiution evoked by a 5-HT,p receptor
agonist for cocaine discrimination (14).

The explanation which anatomical substrates and neuronal mechanisms are
responsible for the enhancement of cocaine discrimination by fluoxetine or CP
94253 is not an easy task. It has been demonstrated that acute systemic
administration of fluoxetine or other selective 5-HT uptake inhibitors elicites
only a small elevation or even no change in the extracellular neurotransmitter
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level in the NAc or frontal cortex, teminal areas of the 5-HT system (48, 49, 50).
In contrast to the above-described findings on 5-HT uptake inhibitors,
a reduction in the extracellular output of 5-HT has been found after the
agonist-evoked activation of 5-HT,, receptors (51, 52). Although some recent
findings postulate that blockade rather than activation of 5-HT,jp receptors at
5-HT terminals enhances the action of 5-HT uptake inhibitors on 5-HT
neurotransmission (53, 54), our findings seem to exclude a role of
presynaptically located 5-HT ;g receptors in the observed behavioural effects,
since fluoxetine and CP 94253 acted in the same direction on cocaine
discrimination and since enhancing effect of fluoxetine was reduced by the
5-HT,g receptor antagonist. In partial support our data, O’Neill and
co-workers (55) demonstated that GR 127935 blocked behavioural effects
a 5-HT uptake inhibitor.

Since 5-HT,p receptors have also been reported to function as inhibitory
heteroreceptors modulating the release of other neurotransmitters (56, 57, 58),
another possible mechanism whereby 5-HT, receptor agonists could enhance
cocaine behaviours following an increase in dopamine release would be the
diminishing release of a neurotransmitter (such as, a y-aminobutyric acid,
GABA) which exerts an inhibitory effect on dopamine release (59, 60). Indeed,
a high density of 5-HT,p receptors is found in the mesolimbic dopamine
pathway (20), and the 5-HT,; receptor-mediated enhancement (due to the
reduction of GABA release in the ventral tegmental area) of the
cocaine-stimulated accumbal dopamine release (23) following disinhibition of
dopamine cell bodies (58) has been reported. The observed potentiation of
cocaine effects may also be mediated by stimulation of 5-HT 5 heteroreceptors
located in other brain areas, such as, e.g. the subicular area of the ventral
hippocampus or the NAc. It has been observed that intra-subicular stimulation
of 5-HT g receptors, which are located on the glutamatergic neurons projecting
to the NAc, reproduces the enhancing effects on DA levels evoked by systemic
administration of 5-HT,p receptor agonists (22). Interestingly enough, in the
NAc it was found that 5-HT through 5-HT,j receptors inhibited the synaptic
potentials on GABA-ergic medium-spiny neurons by decreasing the excitatory
input from ascending glutamate-containg neurons (61). The latter effect of
5-HT has been potentiated by pretreatment with cocaine or citalopram (61).
However, since in the our study drugs were administered systemically, it may
only be speculated on which brain area(s) is (are) responsible for the 5-HT,p
receptor-mediated enhancement of cocaine discrimination. To approach this
issue, further experiments using a microinjection technique are necessary.

In our study we also observed that 5-HT,y receptors are not directly
involved in the discriminative stimulus effects of cocaine. In fact, cocaine
discrimination was not affected by the 5-HT,g receptor antagonists
administered in doses which had been reported to antagonize a number of
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responses to 5-HT,z receptor agonists (27, 55, 62). The negative results
obtained with GR 127935 or GR 55562 regarding cocaine discrimination are
somewhat in line with our recent data that show that the former antagonist did
not affect cocaine sensitisation (24); on the other hand, however, it almost
totally blocked the locomotor hyperactivity induced by acute treatment with
cocaine (24, 27).

In conclusion, our results indicate that 5-HT, g receptors are not involved
in the ability of cocaine to produce a discriminative stimulus effects in rats.
They indicate, however, that pharmacological stimulation of 5-HT, g receptors
— which also seem to be a target for the fluoxetine-mediated increase in 5-HT
neurotransmission — can enhance the overall effects of cocaine.
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