PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 09 | 2 |
Tytuł artykułu

Application of the ensemble nonequilibrium response spectroscopy to shaker potassium channel gating

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Standard electrophysiology techniques study relaxation transients in voltage-gated ion channels generated by discrete voltage steps. The nonequilibrium response spectroscopy involves analyzing responses to fluctuating potentials. We apply the ensemble NRS method to gating kinetics of Shaker potassium ion channels. We evaluate various proposed Markov models of channel gating from the nonequilibrium response viewpoint. These new NRS protocols can be used to test otherwise indistinguishable models or improve estimates for parameters of channel kinetics models.
Wydawca
-
Rocznik
Tom
09
Numer
2
Opis fizyczny
p.375-388,fig.,ref.
Twórcy
autor
  • Loyola University, 6363 St.Charles Ave., New Orleans, LA 70118, USA
Bibliografia
  • 1. Hille, B. Ionic channels of excitable membranes. 3rd ed. Sinauer Associates Inc., Sunderland, MA, 2001.
  • 2. Sakmann, B.and Neher, E. (Eds.) Single channel recording. Plenum Press, New York, London, (1995).
  • 3. Millonas, M.M. and Hanck, D.A. Nonequilibrium response spectroscopy of voltage-sensitive ion channel gating. Biophys. J. 74 (1998) 210-229.
  • 4. Kargol, A., Smith, B. and Millonas, M.M. Applications of nonequilibrium response spectroscopy to the study of channel gating. Experimental design and optimization. J. Theoret. Biol. 218 (2002) 239-258.
  • 5. Millonas, M.M. and Hanck, D.A. Nonequilibrium response spectroscopy and the molecular kinetic of proteins. Phys. Rev. Lett. 80 (1998) 401-404.
  • 6. Hosein-Sooklal, A. and Kargol, A. Wavelet analysis of nonequilibrium ionic current in human heart sodium channel (hH1a). J. Membrane Biol. 188 (2002) 199-212.
  • 7. Eyring, H. The activated complex in chemical reactions. J. Chem. Phys. 3 (1935) 107-115.
  • 8. Hoshi, T., Zagotta, W.N. and Aldrich, R.W. Shaker potassium channel gating I: Transition near the open state. J. Gen. Physiol. 103 (1994) 249-278.
  • 9. Zagotta, W.N., Hoshi, T. and Aldrich, R.W. Shaker potassium channel gating III: Evaluation of kinetic models for activation. J. Gen. Physiol. 103 (1994) 321-362.
  • 10. Zagotta, W.N., Hoshi, T., Dittman, J. and Aldrich, R.W. Shaker potassium channel gating II: Transitions in the activation pathway. J. Gen. Physiol. 103 (1994) 279-319.
  • 11. McManus, O.B. and Magleby, K.L. Kinetic time constants independent of previous single-channel activity suggest Markov gating for a large conductance Ca-activated K channel. J. Gen. Physiol. 94 (1989) 1037-1070.
  • 12. Timmer, J. and Klein, S., Testing the Markov condition in ion channel recordings. Phys. Rev. E 55 (1997) 3306-3310.
  • 13. Fulinski, A., Grzywna, Z., Mellor, I., Siwy, Z. and Usherwood, P.N.R. Non- Markovian character of ionic current fluctuations in membrane channels. Phys. Rev. E 58 (1998) 919-924.
  • 14. Siwy, Z., Mercik, S., Weron, K. and Ausloos, M. Application of dwell-time series in studies of log-range correlation in single channel ion transport. Physica A 297 (2001) 79-96.
  • 15. Siwy, Z. and Fulinski, A. Origins of 1/f noise in membrane channel currents. Phys. Rev. Lett. 89 (2002) 158101.
  • 16. Siwy, Z., Ausloos, M. and Ivanova, K. Correlation studies of open and closed state fluctuations in an ion channel: Analysis of ion current through a large-conductance locust potassium channel. Phys. Rev. E 65 (2002) 031907.
  • 17. Petracchi, D., Ascoli, C., Barbi, M., Chillemi, S., Pellegrini, M. and Pellegrino, M. Periodic forcing of ion channel gating. J. Statist. Phys. 70 (1993) 393-401.
  • 18. Korn, J.S. and Horn, R. Statistical discrimination of fractal and Markov models of single ion channel gating. Biophys. J. 54 (1988) 871-877.
  • 19. Liebovitch, L.S., Fischbarg, J. and Koniarek, J.P. Ion channel kinetics: a model based on fractal scaling rather than multistate Markov processes. Math. Biosci. 84 (1987) 37-68.
  • 20. Liebovitch, L.S. Interpretation of protein structure and dynamics from the statistics of the open and closed times measured in a single ion channel protein. J. Statist. Phys. 70 (1993) 329-337.
  • 21. Liebovitch, L.S. and Todorov, A.T. Using fractals and nonlinear dynamics to determine the physical properties of ion channel proteins. Crit. Rev. Neurobiol. 10 (1996) 169-187.
  • 22. DeFelice, L.J. and Isaac, A. Chaotic states in a random world: relationships between the nonlinear differential equations of excitability and the stochastic properties of ion channels. J. Statist. Phys. 70 (1993) 339-354.
  • 23. Liu, D., Astumian, R.D. and Tsong, T.Y. Activation of Na+ and K+ pumping modes of (Na,K)-ATPase by an oscillating electric field. J. Biol. Chem. 265 (1990) 7260-7267.
  • 24. Xie, T.D., Chen, Y., Marszalek, P. and Tsong, T.Y. Recognition and processing of randomly fluctuating electric signals by Na,K-ATPase. Biophys. J. 67 (1994) 1247-1251.
  • 25. Xie, T.D., Chen, Y., Marszalek, P. and Tsong, T.Y., Fluctuation-driven directional flow in biochemical cycle: further study of electric activation of Na,K pumps. Biophys. J. 72 (1997) 2496-2502.
  • 26. Di Cera, E. Stochastic linkage: effect of random fluctuations on a two-state process. J. Chem. Phys. 95 (1991) 5082-5086.
  • 27. Doering, C.R., Horsthemke, W. and Riordan, J. Nonequilibrium fluctuation- induced transport. Phys. Rev. Lett. 72 (1994) 2984-2987.
  • 28. Astumian, R.D., Chock, P.B., Tsong, T.Y. and Westerhoff, H.V. Effect of oscillations and energy-driven fluctuations on the dynamics of enzyme catalysis and free-energy transduction. Phys. Rev. A 39 (1989) 6416-6435.
  • 29. Robertson, B. and Astumian, R.D. Frequency dependence of catalyzed reactions in a weak oscillating field. J. Chem. Phys. 94 (1991) 7414-7419.
  • 30. Fuliński, A. Noise-simulated active transport in biological cell membranes. Phys. Lett. A 193 (1994) 267-273.
  • 31. Fuliński, A. Active transport in biological membranes and stochastic resonances. Phys. Rev. Lett. 79 (1997) 4926-4929.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-9419a326-ac01-4f86-962c-e8786f0433cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.