PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 47 | 4 |

Tytuł artykułu

Unintended consequences of plant transformation: a molecular insight

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Plant genomes are dynamic structures having both the system to maintain and accurately reproduce the information encoded therein and the ability to accept more or less random changes, which is one of the foundations of evolution. Crop improvement and various uncontrolled stress factors can induce unintended genetic and epigenetic variations. In this review it is attempted to summarize factors causing such changes and the molecular nature of these variations in transgenic plants. Unintended effects in transgenic plants can be divided into three main groups: first, pleiotropic effects of integrated DNA on the host plant genome; second, the influence of the integration site and transgene architecture on transgene expression level and stability; and third, the effect of various stresses related to tissue handling, regeneration and clonal propagation. Many of these factors are recently being redefined due to new researches, which apply modern highly sensitive analytical techniques and sequenced model organisms. The ability to inspect large portions of genomes clearly shows that tissue culture contributes to a vast majority of observed genetic and epigenetic changes. Nevertheless, monitoring of thousands transcripts, proteins and metabolites reveals that unintended variation most often falls in the range of natural differences between landraces or varieties. We expect that an increasing amount of evidence on many important crop species will support these observations in the nearest future.

Wydawca

-

Rocznik

Tom

47

Numer

4

Opis fizyczny

p.277-286,ref.

Twórcy

autor
  • Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw Agricultural University, Nowoursynowska 159, 02-776 Warsaw, Poland
autor
  • Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw Agricultural University, Nowoursynowska 159, 02-776 Warsaw, Poland

Bibliografia

  • Allen GC, Spiker S, Thompson WF, 2000. Use of matrix attachment regions (MARs) to minimize transgene silencing. Plant Mol Biol 43: 361-376.
  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, et al. 2003. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Sci 301: 653-657.
  • Anderson S, Lewis-Smith A, Smith S, 1990. Methylation of ribosomal RNA genes in Petunia hybrida plants, callus cultures and regenerated shoots. Plant Cell Rep 8: 554-557.
  • Arencibia A, Gentinetta E, Cuzzoni E, Castigline S, Kohli A, Vain P, et al. 1998. Molecular analysis of the genome of transgenic rice (Oryza sativa L.) plants produced via particle bombardment or intact cell electroporation. Mol Breed 4: 99-109.
  • Azpiroz-Leehan R, Feldmann KA, 1997. T-DNA insertion mutagenesis in Arabidopsis: going back and forth. Trends Genet 13: 152-156.
  • Bao PH, Granata S, Castiglione S, Wang G, Giordani C, Cuzzoni E, et al. 1996. Evidence for genomic changes in transgenic rice (Oryza sativa L.) recovered from protoplasts. Transgenic Res 5: 97-103.
  • Bardini M, Labra M, Winfield M, Sala F, 2003. Antibiotic-induced DNA methylation changes in calluses of Arabidopsis thaliana. Plant Cell Tiss Org Cult 72: 157-162.
  • Brown PTH, Lange FD, Lörz H, 1992. Molecular changes in tissue culture-derived plants. Adv Mol Genet 5: 171-195.
  • Butaye KJM, Goderis IJWM, Wouters PFJ, Pues JM-TG, Delaure SL, Broekaert WF, et al. 2004. Stable high-level transgene expression in Arabidopsis thaliana using gene silencing mutants and matrix attachment regions. Plant J 39: 440-449.
  • Butaye KMJ, Cammue BPA, Delauré SL, De Bolle MFC, 2005. Approaches to minimize variation of transgene expression in plants. Mol Breed 16: 79-91.
  • Carman JG, 1995. Nutrient absorption and the development and genetic stability of cultured meristems. In: Terzi et al., eds. Current Issues in Plant Molecular and Cellular Biology. Dordrecht, Netherlands: Kluwer Academic Publishers: 393-403.
  • Charlton A, Allnutt T, Holmes S, Chisholm J, Bean S, Ellis N, et al. 2004. NMR profiling of transgenic peas. Plant Biotech J 2: 27-35.
  • Choffnes DS, Philip R, Vodkin LO, 2001. A transgenic locus in soybean exhibits a high level of recombination. In Vitro Cell Dev Biol Plant 37: 756-762.
  • Clough SJ, Bent AF, 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735-743.
  • Colijn-Hooymans CM, Hakkert JC, Jansen J, Custers JBM, 1994. Competence for regeneration of cucumber cotyledons is restricted to specific developmental stages. Plant Cell Tiss Org Cult 39: 211-217.
  • El Ouakfaoui S, Miki В, 2005. The stability of the Arabidopsis transcriptome in transgenic plants expressing the marker genes nptII and uidA. Plant J 41: 791-800.
  • Fiehn O, Kopka J, Dörmann P, Altman T, Trethewey RN, Willmitzer L, 2000. Metabolite profiling for plant functional genomics. Nat Biotech 18: 1157-1161.
  • Filipecki M, Wiśniewska A, Yin Z, Malepszy S, 2005. The heritable changes in metabolic profiles of plants regenerated in different types of in vitro culture. Plant Cell Tiss Org Cult 82: 349-356.
  • Fitch MM, Manshardt RM, Gonsalves D, Slightom JL, Sanford JC, 1992. Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Biotechnology 10: 1466-1472.
  • Forsbach A, Schubert D, Lechtenberg B, Gils M, Schmidt R, 2003. A comprehensive characterization of single-copy T-DNA insertions in the Arabidopsis thaliana genome. Plant Mol Biol 52: 161-176.
  • Fukui K, 1983. Sequential occurrence of mutations in a growing rice callus. Theor Appl Genet 65: 225-230.
  • Hall G Jr, Allen GC, Loer DS, Thompson WF, Spiker S, 1991. Nuclear scaffolds and scaffold-attachment regions in higher plants. Proc Natl Acad Sci USA 88: 9320-9324.
  • Halweg C, Thompson WF, Spiker S, 2005. The Rb7 matrix attachment region increases the likelihood and magnitude of transgene expression in tobacco cells: a flow cytometric study. Plant Cell 17: 418-429.
  • Heil M, Baldwin IT, 2002. Fitness costs of induced resistance: the emerging experimental support for a slippery concept. Trends Plant Sci 7: 61-67.
  • Herman L, Jacobs A, Van Montagu M, Depicker A, 1990. Plant chromosome/marker gene fusion assay for study of normal and truncated T-DNA integration events. Mol Gen Genet 224: 248-256.
  • Hobbs SL, Kpodar P, DeLong CM, 1990. The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol Biol 15: 851-864.
  • Ichikawa T, Nakazawa M, Kawashima M, Muto S, Gohda K, Suzuki K, et al. 2003. Sequence database of 1172 T-DNA insertion sites in Arabidopsis activation-tagging lines that showed phenotypes in T1 generation. Plant J 36: 421-429.
  • Jackson MW, Stinchcombe JR, Korves TM, Schmitt J, 2004. Costs and benefits of cold tolerance in transgenic Arabidopsis thaliana. Mol Ecol 13: 3609-3615.
  • James VA, Worland B, Snape JW, Vain P, 2004a. Development of a standard operating procedure (SOP) for the precise quantification of transgene expression levels in rice plants. Physiol Plant 120: 650-656.
  • James VA, Worland B, Snape JW, Vain P, 2004b. Strategies for precise quantification of transgene expression levels over several generations in rice. J Exp Bot 55: 1307-1313.
  • Kaeppler SM, Kaeppler HF, Rhee Y, 2000. Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43: 179-188.
  • Kaeppler SM, Phillips RL, 1993. DNA methylation and tissue culture-induced variation in plants. In Vitro Cell Dev Biol 29: 125-130.
  • Kaeppler SM, Phillips RL, Olhoft P, 1998. Molecular basis of heritable tissue culture-induced variation in plants. In: Jain et al., eds. Somaclonal variation and induced mutations in crop improvement. Current plant science and biotechnology in agriculture. Dordrecht, Netherlands: Kluwer Academic Publishers 32: 465-484.
  • Karp A, 1991. On the current understanding of somaclonal variation. Oxford Surv Plant Mol Cell Biol 7: 1-58.
  • Koncz C, Németh K, Rédei GP, Schell J, 1992. T-DNA insertional mutagenesis in Arabidopsis. Plant Mol Bol 20: 963-976.
  • Kuiper HA, Kleter GA, Noteborn HPJM, Kok EJ, 2001. Assessment of the food safety issues related to genetically modified foods. Plant J 27: 503-528.
  • Labra M, Savini C, Bracale M, Pelucchi N, Colombo L, Bardini M, Sala F, 2001. Genomic changes in transgenic rice (Oryza sativa L.) plants produced by infecting calli with Agrobacterium tumefaciens. Plant Cell Rep 20: 325-330.
  • Labra M, Vanini C, Grassi F, Bracale M, Balsemin M, Basso B, Sala F, 2004. Genomic stability in Arabidopsis thaliana transgenic plants obtained by floral dip. Theor Appl Genet 109: 1512-1518.
  • Larkin PJ, Scowcroft WR, 1981. Somaclonal variation - A novel source of variability from cell culture for plant improvement. Theor Appl Genet 60: 197-214.
  • Latham JR, Wilson AK, Steinbrecher RA, 2006. The mutational consequences of plant transformation. J Biomed Biotech 25376: 1-7.
  • Lechtenberg B, Schubert D, Forsbach A, Gils M, Schmidt R, 2003. Neither inverted repeat T-DNA configurations nor arrangements of tandemly repeated transgenes are sufficient to trigger transgene silencing. Plant J 34: 507-517.
  • Lee M and Phillips RL, 1988. The chromosomal basis of somaclonal variation. Ann Rev Plant Physiol Plant Mol Biol 39: 413-37.
  • Lehesranta SJ, Davies HV, Shepherd LV, Nunan N, McNicol JW, Auriola S, et al. 2005. Comparison of tuber proteomes of potato varieties, landraces, and genetically modified lines. Plant Physiol 138: 1690-1699.
  • Levin JS, Thompson WF, Csinos AS, Stephenson MG, Weissinger AK, 2005. Matrix attachment regions increase the efficiency and stability of RNA-mediated resistance to Tomato Spotted Wilt Virus in transgenic tobacco. Transgenic Res 14: 193-206.
  • LoSchiavo F, Pitto L, Giuliano G, Torti G, Nuti-Ronchi V, Marazatti D, et al. 1989. DNA methylation of embryogenic carrot cell cultures and its variations as caused by mutation, differentiation, hormones and hypomethylating drugs. Theor Appl Genet 77: 325-331.
  • Lucht JM, Mauch-Mani В, Steiner H-Y, Metraux JP, Ryals J, Hohn B, 2002. Pathogen stress increases somatic recombination frequency in Arabidopsis. Nat Genet 30: 311-314.
  • Lund G, Das OP, Messing J, 1995. Tissue-specific DNaseI-sensitive sites of the maize P gene and their changes upon epimutation. Plant J 7: 797-807.
  • Madlung A, Comai L, 2004. The effect of stress on genome regulation and structure. Ann Bot Lond 94: 481-495.
  • Matzke MA, Matzke AJM, 1996. Stable epigenetic states in differentiated plant cells: implications for somaclonal variation and gene silencing in transgenic plants. In: Russo et al., eds. Epigenetic mechanisms of gene regulation. Cold Spring Harbor, NY: Cold Spring Harbor Press: 377-392.
  • Mette MF, Aufsatz W, van der Vinden J, Matzke MA, Matzke AJ, 2000. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J 19: 5194-5201.
  • Mlynarova L, Jansen RC, Conner AJ, Stiekema WJ, Nap J-P, 1995. The MAR-mediated reduction in position effect can be uncoupled from copy number-dependent expression in transgenic plants. Plant Cell 7: 599-609.
  • Molinier J, Ries G, Zipfel C, Hohn В, 2006. Transgeneration memory of stress in plants. Nature 442: 1046-1049.
  • Olhoft PM, Phillips RL, 1999. Genetic and epigenetic instability in tissue culture and regenerated progenies. In: Lemer HR, ed. Plant responses to environmental stresses: From phytohormones to genome reorganization. New York: Marcel Dekker: 111-148.
  • Peach C, Velten J, 1991. Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol Biol 17: 49-60.
  • Phillips RL, Kaeppler SM, Olhoft P, 1994. Genetic instability of plant tissue cultures: breakdown of normal controls. Proc Natl Acad Sci USA 91: 5222-5226.
  • Prols F, Meyer P, 1992. The methylation patterns of chromosomal integration regions influence gene activity of transferred DNA in Petunia hybrida. Plant J 2: 465-475.
  • Qin H, Dong Y, von Arnim AG, 2003. Epigenetic interactions between Arabidopsis transgenes: characterization in light of transgene integration sites. Plant Mol Biol 52: 217-231.
  • Rang A, Linke В, Jansen В, 2005. Detection of RNA variants transcribed from the transgene in Roundup Ready soybean. Eur Food Res Technol 220: 438-443.
  • Reyes JC, Hennig L, Gruissem W, 2002. Chromatin-remodeling and memory factors. New regulators of plant development. Plant Physiol 130: 1090-1101.
  • Richards EJ, 1997. DNA methylation and plant development. Trends Genet 13: 319-323.
  • Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie AR, 2001. Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13: 11-29.
  • Rudd S, Frisch M, Grote K, Meyers ВС, Mayer K, Werner T, 2004. Genome-wide in silico mapping of scaffold/matrix attachment regions in Arabidopsis suggests correlation of intragenic scaffold/matrix attachment regions with gene expression. Plant Physiol 135: 715-722.
  • Ruebelt MC, Leimgruber NK, Lipp M, Reynolds TL, Nemeth MA, Astwood JD, et al. 2006a. Application of two-dimensional gel electrophoresis to interrogate alterations in the proteome of genetically modified crops. 1. Assessing analytical validation. J Agric Food Chem 54: 2154-2161.
  • Ruebelt MC, Lipp M, Reynolds TL, Astwood JD, Engel K-H, Jany K-D, 2006b. Application of two-dimensional gel electrophoresis to interrogate alterations in the proteome of genetically modified crops. 2. Assessing natural variability. J Agric Food Chem 54: 2162-2168.
  • Ruebelt MC, Lipp M, Reynolds TL, Schmuke JJ, Astwood JD, DellaPena D, et al. 2006c. Application of two-dimensional gel electrophoresis to interrogate alterations in the proteome of genetically modified crops. 3. Assessing unintended effects. J Agric Food Chem 54: 2169-2177.
  • Salvo-Garrido H, Travella S, Bilham LJ, Harwood WA, Snape JW, 2004. The distribution of transgene insertion sites in barley determined by physical and genetic mapping. Genetics 167: 1371-1379.
  • Saxe D, Datta A, Jinks-Robertson S, 2000. Stimulation of mitotic recombination events by high levels of RNA polymerase II transcription in yeast. Mol Cell Biol. 20: 5404-5414.
  • Schmitt F, Oakeley EJ, Jost JP, 1997. Antibiotics induce genome-wide hypermethylation in cultured Nicotiana tabacum plants. J Biol Chem 272: 1534-1540.
  • Schubert D, Lechtenberg B, Forsbach A, Gils M, Bahadur S, Schmidt R, 2004. Silencing in Arabidopsis T-DNA transformants: The predominant role of a gene-specific RNA sensing mechanism versus position effects. Plant Cell 16: 2561-2572.
  • Sha Y, Li S, Pei Z, Luo L, Tian Y, He C, 2004. Generation and flanking sequence analysis of a rice T-DNA tagged population. Theor Appl Genet 108: 306-314.
  • Skirvin RM, Coyner M, Horton MA, Motoike S., Gorvin D, 2000. Somaclonal variation: do we know what causes it? AgBiotechNet 2: 1-4.
  • Skirvin RM, McPheeters KD, Norton M, 1994. Sources and frequency of somaclonal variation. Hort Sci 29: 1232-1237.
  • Smulders MJM, Rus-Kortekaas W, Vosman B, 1995. Tissue culture-induced DNA methylation polymorphisms in repetitive DNA of tomato calli and regenerated plants.Theor Appl Genet 91: 1257-1264.
  • Stief A, Winter D, Stratling W, Sippel A, 1989. A nuclear DNA attachment element mediates elevated and position-independent gene activity. Nature 341: 343-345.
  • Tagashira N, Plader W, Filipecki M, Yin Z, Wisniewska A, Gaj P, et al. 2005. The metabolic profiles of transgenic cucumber lines vary with different chromosomal locations of the transgene. Cell Mol Biol Lett 10: 697-710.
  • Tovar J, Lichtenstein C, 1992. Somatic and meiotic chromosomal recombination between inverted duplications in transgenic tobacco plants. Plant Cell 4: 319-332.
  • Tzfira T, Vaidya M, Citovsky V, 2001. VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2 is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J 20: 3596-3607.
  • Vain P, James VA, Worland B, Snape JW, 2002. Transgene behaviour across two generations in a large random population of transgenic rice plants produced by particle bombardment. Theor Appl Genet 105: 878-889.
  • van Blokland R, ten Lohuis M, Meyer P, 1997. Condensation of chromatin in transcriptional regions of an inactivated plant transgene: evidence for an active role of transcription in gene silencing. Mol Gen Genet 257: 1-13.
  • Vaucheret H, Beclin C, Elmayan T, Feuerbach F, Godon C, Morel J-B, et al. 1998. Transgene-induced gene silencing in plants. Plant J 16: 651-659.
  • Veilleux RE, Johnson AAT, 1998. Somaclonal variation: Molecular analysis, transformation interaction and utilization. Plant Breeding Reviews 16: 229-268.
  • Wenck A, Czako M, Kanevski I, Marton L, 1997. Frequent collinear long transfer of DNA inclusive of the whole binary vector during Agrobacterium-mediated transformation. Plant Mol Biol 34: 913-922.
  • Ye F, Singer ER, 1996. RIGS (repeat-induced gene silencing) in Arabidopsis is transcriptional and alters chromatin configuration. Proc Natl Acad Sci USA 93: 10881-10886.
  • Yin Z, Plader W, Malepszy S, 2004. Transgene inheritance in plants. J Appl Genet 45: 127-144.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-9135bde6-9bf6-4c59-a81e-7a5776168966
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.