PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2005 | 50 | 1 |

Tytuł artykułu

Patterns of genetic variation within a captive population of Amur tiger Panthera tigris altaica

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Eight founders and thirty-one descendants were sampled as the Founder group and the Offspring group respectively from a captive population of Amur tigerPanthera tigris altaica Temminck, 1844 for population genetic analysis with RAPD and ISSR markers. Integrated with demographic data during the initial recovery stage, results showed: (1) increasing the population size (N) and the effective population size (N e) greatly retard lose of genetic variation induced mainly by genetic drift and selection; (2) recombination and admixture could cause the Offspring group (5.711%) and the Founder group (10.383%) to hold different linkage disequilibrium (LD); (3) further Ohta’s variance analysis indicated genetic drift (87.3%) and epistatic selection (12.7%) maintained LD in population, whereas GENEDROP analysis supported epistatic selection largely derived from artificial selection of managers; (4) both Tajima’s test and Fu’s test confirmed the statistic neutrality of genetic markers used, moreover the positive value of Tajima’sD (0.090) together with the result that π (25.286) was bigger than ϑ (24.898) revealed the Founder group was admixture population, while the negative Tajima’sD value (−0.053) together with the result that π (23.679) was less than ϑ (23.912) disclosed the Offspring group experienced selective sweep.

Wydawca

-

Czasopismo

Rocznik

Tom

50

Numer

1

Opis fizyczny

p.23-30,fig.,ref.

Twórcy

autor
  • Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
autor
autor

Bibliografia

  • Allendorf F. W. 1993. Delay of adaptation to captive breeding by equalizing family size. Conservation Biology 7: 416–419.
  • Black W. C. IV and Krafsur E. S. 1985. A FORTRAN program for the calculation and analysis of two-locus linkage disequilibrium coefficients. Theoretical and Applied Genetics 70: 491–496.
  • Borlase S. C., Loebel D. A., Frankham R., Nurthen R. K., Briscoe D. A. and Daggard G. E. 1993. Modeling problems in conservation genetics using captive Drosophila populations: Consequences of equalization of family sizes. Conservation Biology 7: 122–131.
  • Conrad K. 2000. Safety in numbers: review of the Breeding Center forFelidae at Hengdaohezi. Downloadable from http://​www.​5tigers.​org
  • Crow J. F. and Kimura M. (eds) 1970. An introduction to population genetics theory. Harper & Row, New York: 150–155.
  • Ellstrand N. C. and Elam D. R. 1993. Population genetic consequences of small population size: implications for plant conservation. Annual Review of Ecology and Systematics 24: 217–242.
  • Fernández J. and Caballero A. 2001. Accumulation of deleterious mutations and equalization of parental contributions in the conservation of genetic resources. Heredity 86: 480–488.
  • Fiumera A. C., Parker P. G. and Fuerst P. A. 2000. Effective population size and maintenance of genetic diversity in captive-bred populations of a Lake Victoria Cichlid. Conservation Biology 14: 886–892.
  • Frankham R. 1986. Selection in captive populations. Zoo Biology 5: 127–138.
  • Frankham R. 1996. Relationship of genetic variation to population size in wildlife. Conservation Biology 10: 1500–1508.
  • Fu Y-X. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915–925.
  • Gillespie J. H. 1991. The cause of molecular evolution. Oxford University Press, New York: 1–250.
  • Gupta S. 1996. The maintenance of strain structure in populations of recombining infectious agents. Nature Medicine 2: 437–442.
  • Halley J. and Hoelzel A. R. 1996. Simulation models of bottleneck events in natural populations. [In: Molecular genetic approaches in conservation. T. B. Smithand and R. K. Wayne, eds]. Oxford University Press, New York: 347–364.
  • Hedrick P. W. 1986. Protein variation, fitness and captive propagation. Zoo Biology 5: 91–99.
  • IUCN 1998. IUCN Guidelines for reintroductions. Nairobi, Kenya, IUCN/SSC Reintroductions Specialist Group.
  • Loftin R. 1995. Captive breeding of endangered species. [In: Ethics on the Ark. B. G. Norton, ed]. Smithsonian Institution Press, Washington: 164–180.
  • Meffe G. K. and Carroll R. 1997. The Species in Conservation. [In: Principles of conservation biology. G. K. Meffe and R. Carroll, eds]. Sinauer Associates Inc., Sunderland: 223–285.
  • Nei M. (ed) 1975. Molecular population genetics and evolutions. North-Holland Publishing Company, Amsterdam: 110–380.
  • Nei M. (ed) 1987. Molecular evolutionary genetics. Columbia University Press, New York: 1–400.
  • Nei M., Maruyama T. and Chakraborty R. 1975. The bottleneck effect and genetic variability in populations. Evolution 29: 1–10.
  • Ohta T. 1982a. Linkage disequilibrium due to random genetic drift in finite subdivided populations. Proceedings of the National Academy of Sciences 79: 1940–1944.
  • Ohta T. 1982b. Linkage disequilibrium with the island model. Genetics 101: 139–155.
  • Rand D. M. 1996. Neutrality tests of molecular markers and the connection between DNA polymorphism, demography, and conservation biology. Conservation Biology 10: 665–671.
  • Schneider S., Roessli D. and Excoffier L. 2000. Arlequin ver 2.000: a software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland.
  • Seidensticker J., Christie S. and Jackson P. (eds) 1999. Riding the tigers: tiger conservation in human-dominated landscapes. Cambridge University Press, Cambridge: 1–123.
  • Slatkin M. 1994. Linkage disequilibrium in growing and stable population. Genetics 137: 331–336.
  • Smit-McBride Z., Moya A. and Ayala F. J. 1988. Linkage disequilibrium in natural and experimental populations ofDrosophila melanogaster. Genetics 120: 1043–1051.
  • Soulé M. E. 1976. Allozyme variation, its determinations in space and time. [In: Molecular evolution. F. J. Ayala, ed]. Sinauer Associates, Sunderland: 60–77.
  • Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.
  • Wedekind C. 2002. Sexual selection and life-history decisions: Implications for supportive breeding and the management of captive populations. Conservation Biology 16: 1204–1211.
  • Williams J. G., Kubelik A. R., Livak K. J., Rafalski J. A. and Tingey S. V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18: 6531–6535.
  • Wright S. 1931. Evolution in Mendelian populations. Genetics 16: 97–159.
  • Zietkiewicz E., Rafalski A. and Labuda D. 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20: 176–183.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-8f77fc04-bfa3-41e7-bd37-6473e8cc38b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.