PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 53 | 2 |

Tytuł artykułu

Contribution of the intra- and intermolecular routes in autocatalytic zymogen activation: application to pepsinogen activation

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Taking as the starting point a recently suggested reaction scheme for zymogen activation involving intra- and intermolecular routes and the enzyme-zymogen complex, we carry out a complete analysis of the relative contribution of both routes in the process. This analysis suggests the definition of new dimensionless parameters allowing the elaboration, from the values of the rate constants and initial conditions, of the time course of the contribution of the two routes. The procedure mentioned above related to a concrete reaction scheme is extrapolated to any other model of autocatalytic zymogen activation involving intra- and intermolecular routes. Finally, we discuss the contribution of both of the activating routes in pepsinogen activation into pepsin using the values of the kinetic parameters given in the literature.

Wydawca

-

Rocznik

Tom

53

Numer

2

Opis fizyczny

p.407-420,fig.,ref.

Twórcy

autor
  • Universidad de Castilla-La Mancha, Albacete, Spain
autor
autor
autor
autor

Bibliografia

  • Abad-Zapatero C, Rydel TJ, Erickson J (1990) Revised 2.3 Å structure of porcine pepsin: evidence for a flexible subdomain. Proteins 8: 62–81.
  • Al-Janabi J, Hartsuck JA, Tang J (1972) Kinetics and mechanism of pepsinogen activation. J Biol Chem 247: 4628–4632.
  • Boatright KM, Salvesen GS (2003) Mechanism of caspase activation. Curr Opin Cell Biol 15: 725–731.
  • Chen JM, Kukor Z, Le Marechal C, Coth M, Tsakiris L, Raguenes C, Ferec C, Sahin-Toth M (2003) Evolution of trypsinogen activation peptides. Mol Biol Evol 20:1767–1777.
  • Chou K-C, Howe WJ (2002) Prediction of the tertiary structure of the β-secretase zymogen. Biochem Biophys Res Commun 292: 702–708.
  • Fehlberg EK (1970) Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme. Computing 6: 61-71.
  • Foltmann B (1966) A review on prorennin and rennin. CR Trav Lab Carlsberg 35: 143–151.
  • Fuentes ME, Varón R, García-Moreno M, Valero E (2005a) Kinetics of intra- and intermolecular zymogen activation with formation of an enzyme-zymogen complex. FEBS J 272: 85–96.
  • Fuentes ME, Varón R, García-Moreno M, Valero E (2005b) Kinetics of autocatalytic zymogen activation measured by a coupled reaction: pepsinogen autoactivation. Biol Chem 386: 689–698.
  • Galindo JD, Peñafiel R, Varón R, Pedreño E, García-Carmona F, García-Cánovas F (1983) Kinetic study of the activation process of frog epidermis pro-tyrosinase by trypsin. Int J Biochem 15: 633–637.
  • García-Moreno M, Havsteen BH, Varón R, Rix-Matzen H (1991) Evaluation of the kinetic parameters of the activation of trypsinogen by trypsin. Biochim Biophys Acta 1080: 143–147.
  • García-Sevilla F, Garrido del Solo C, Duggleby RG, García- Cánovas F, Peyró R, Varón R (2000) Use of a windows program for simulation of the progress curves of reactants and intermediates involved in enzyme-catalyzed reactions. Biosystems 54: 151–164.
  • Glick DM, Valler MJ, Rowlands CC, Evans JC, Kay J (1982) Activation of spin-labeled chicken pepsinogen. Biochemistry 16: 3746–3750.
  • Glick DM, Shalitin Y, Hilt CR (1989) Studies on the irreversible step of pepsinogen activation. Biochemistry 28: 2626–2630.
  • Hayashi K, Sakamoto N (1986) Determination of reaction scheme and kinetic parameters. In Dynamic Analysis of Enzyme Systems. An Introduction. pp 297–303, Japan Scientific Societies Press, Tokyo.
  • Kageyama T (1988) Analysis of the activation of pepsinogen in the presence of protein substrates and estimation of the intrinsic proteolytic activity of pepsinogen. Eur J Biochem 176: 543–549.
  • Kageyama T, Takahashi K (1987) Activation mechanism of monkey and porcine pepsinogens A. One-step and stepwise activation pathways and their relation to intramolecular and intermolecular reactions. Eur J Biochem 165: 483–490.
  • Kanost MR, Jiang H, Yu XQ (2004) Innate immune responses of a lepidopteran insect, Manduca sexta. Immunol Rev 198: 97–105.
  • Koga D, Hayashi K (1976) Activation process of pepsinogen. J Biochem 5: 449–476.
  • Lin X, Lin Y, Koelsch G, Gustchina A, Wlodawer A, Tang J (1992) Enzymic activities of two-chain pepsinogen, two-chain pepsin, and the amino-terminal lobe of pepsinogen. J Biol Chem 267: 17257–17263.
  • Liu JH, Wang ZX (2004) Kinetic analysis of ligand-induced autocatalytic reactions. Biochem J 379: 697–702.
  • Lluis F, Roma J, Suelves M, Parra M, Aniorte G, Gallardo E, Illa I, Rodríguez L, Hughes SM, Carmeliet P, Roig M, Muñoz-Cánoves P (2001) Urokinase-dependent plasminogen activation is required for efficient skeletal muscle regeneration in vivo. Blood 97: 1703–1711.
  • Magklara A, Mellati AA, Wasney GA, Little SP, Sotiropoulou G, Becker GW, Diamandis EP (2003) Characterization of the enzymatic activity of human kallikrein 6: autoactivation, substrate specificity, and regulation by inhibitors. Biochem Biophys Res Commun 307: 948–955.
  • Manjabacas MC, Valero E, García-Moreno M, García-Cánovas F, Rodríguez JN, Varón R (1992) Kinetic analysis of the control through inhibition of autocatalytic zymogen activation. Biochem J 282: 583–587.
  • Manjabacas MC, Valero E, García-Moreno M, Varón R (1995) Kinetic analysis of an autocatalytic process coupled to a reversible inhibition. The inhibition of the system trypsinogen-trypsin by p-aminobenzamidine. Biol Chem Hoppe-Seyler 376: 577–580.
  • Manjabacas MC, Valero E, García-Moreno M, Garrido C, Varón R (1996) Kinetics of an autocatalytic zymogen reaction in the presence of an inhibitor coupled to a monitoring reaction. Bull Math Biol 58: 19–41.
  • Manjabacas MC, Valero E, Moreno-Conesa M, García- Moreno M, Molina-Alarcón M, Varón R (2002) Linear mixed irreversible inhibition of the autocatalytic activation of zymogens. Kinetic analysis checked by simulated progress curves. Int J Biochem Cell Biol 34: 358–369.
  • Marciniszyn J Jr, Huang JS, Hartsuck JA, Tang J (1976)
  • Mechanism of intramolecular activation of pepsinogen. Evidence for an intermediate delta and the involvement of the active site of pepsin in the intramolecular activation of pepsinogen. J Biol Chem 254: 7095–7102.
  • Marin F, Roldan V, Lip GY (2003) Fibrinolytic function and atrial fibrillation. Thromb Res 109: 233–240.
  • Mathews JH, Fink KD (1999) Ecuaciones diferenciales ordinarias. In Métodos Numéricos con MATLAB 3rd edn, (Capella I, ed) pp 505–509, Prentice Hall, Madrid, Spain.
  • McKay TR, Bell S, Tenev T, Stoll V, Lopes R, Lemoine NR, McNeish IA (2003) Procaspase 3 expression in ovarian carcinoma cells increases surviving transcription which can be countered with a dominant-negative mutant, surviving T34A; a combination gene therapy strategy. Oncogene 22: 3539–3547.
  • McPhie P (1974) Pepsinogen: activation by a unimolecular mechanism. Biochem Biophys Res Commun 56: 789–792.
  • Pearton DJ, Nirunsuksiri W, Rehemtulla A, Lewis SP, Presland RB, Dale BA (2001) Proprotein convertase expression and localization in epidermis: evidence for multiple roles and substrates. Exp Dermatol 10: 193–203.
  • Pedersen VB, Christensen KA, Foltmann B (1979) Investigations on the activation of bovine prochymosin. Eur J Biochem 94: 573–580.
  • Richter C, Tanaka T, Yada RY (1998) Mechanism of activation of the gastric aspartic proteinases: pepsinogen, progastricsin and prochymosin. Biochem J 335: 481–490.
  • Richter C, Tanaka T, Koseki T, Yada RY (1999) Contribution of a prosegment lysine residue to the function and structure of porcine pepsinogen A and its active form pepsin A. Eur J Biochem 261: 746–752.
  • Shariat-Madar Z, Mahdi F, Schmaier AH (2004) Recombinant prolylcarboxypeptidase activates plasma prekallikrein. Blood 103: 4554–4561.
  • Shi Y (2004) Caspase activation: revising the induced proximity model. Cell 117: 855–858.
  • Spronk HM, Govers-Fiemslag JW, ten Cate H (2003) The blood coagulation system as a molecular machine. Bioessays 25: 1220–1228.
  • Tanaka T, Yada RY (1997) Engineered porcine pepsinogen exhibits dominant unimolecular activation. Arch Biochem Biophys 340: 355–358.
  • van den Hazel HB, Wolff AM, Kielland-Brandt MC, Winther JR (1997) Mechanism and ion-dependence of in vitro autoactivation of yeast proteinase A: possible implications for compartmentalized activation in vivo. Biochem J 326: 339–344.
  • Varón R, Román A, García-Canovas F, García-Carmona F (1986) Transient phase kinetics of activation of humanplasminogen. Bull Math Biol 48: 149–166.
  • Varón R, Havsteen BH, Vázquez A, García-Moreno M, Valero E, García-Cánovas F (1990) Kinetics of the trypsinogen activation by enterokinase and trypsin. J Theor Biol 145: 123–131.
  • Varón R, Havsteen BH, García-Moreno M, Vázquez A, Tudela J, García-Cánovas FG (1991) Kinetics of the trypsinogen activation by enterokinase and or trypsincoupling of a reaction in which the trypsin acts on one of its substrates. J Mol Catal 66: 409–419.
  • Varón R, Havsteen BH, García-Moreno M, Vázquez A (1992) Kinetics of a model of autocatalysis, coupling of a reaction in which the enzyme acts on one of its substrates. J Theor Biol 154: 261–270.
  • Varón R, Molina R, García-Moreno M, García-Sevilla F, Valero E (1994) Kinetic analysis of the opened bicyclic enzyme cascades. Biol Chem Hoppe-Seyler 375: 365–371.
  • Vázquez A, Varón R, Tudela J, García-Cánovas F (1993) Kinetic characterization of a model for zymogen activation: an experimental design and kinetic data analysis. J Mol Catal. 79: 347–363.
  • Wu J-W, Wu Y, Wang Z-X (2001) Kinetic analysis of a simplified scheme of autocatalytic zymogen activation. Eur J Biochem 268: 1547–1553.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-8de08d66-c85e-42a8-bdff-cb9ede0f7b47
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.