PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2005 | 64 | 4 |

Tytuł artykułu

Schwann units in the human foetal phrenic nerve

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In three human foetuses aged 15, 17, and 23 weeks the number of axons surrounded by single Schwann cells was counted. These Schwann cell/axon complexes form the Schwann units. The largest Schwann units in the foetus aged 15 weeks contained 232 axons, in the foetus of 17 weeks the number was 140 and in the foetus of 23 weeks the largest units contained 65 axons.

Wydawca

-

Czasopismo

Rocznik

Tom

64

Numer

4

Opis fizyczny

p.253-268,fig.,ref.

Twórcy

autor
  • University School of Medical Sciences, Swiecickiego 6, 60-781 Poznan, Poland
autor

Bibliografia

  • 1. Anton ES, Sandrock AW, Matthew WD (1994) Merosin promotes neurite growth and Schwann cell migration in vitro and nerve regeneration in vivo: evidence using an antibody to merosin, ARM-1. Dev Biol, 164: 133–-146.
  • 2. Bruska M, Piotrowski A (2004) Development of the myelin sheath of the hypogastric nerves in a human foetus aged 23 weeks. Folia Morphol, 63: 289–301.
  • 3. Fraher JP (1978) Quantitative studies on the maturation of central and peripheral parts of individual ventral motoneuron axons. I. Myelin sheath and axon calibre. J Comp Neurol, 144: 233–252.
  • 4. Fernandezvalle C, Gwynn L, Wood PM, Carbonetto S, Bunge MB (1994) Anti-b1 integrin antibody inhibits Schwann cell meylination. J Neurobiol, 25: 1207–1226.
  • 5. Gaiano N, Fishell G (2002) The role of Notch in promoting glial and neural stem cell fates. Ann Rev Neurosci, 25: 471–490.
  • 6. Gamble HJ (1966) Further electron microscope studies of human foetal peripheral nerves. J Anat, 100: 487–502.
  • 7. Gamble HJ, Breathnach AS (1966) An electron microscope study of human foetal peripheral nerves. J Anat, 99: 573–584.
  • 8. Georgiou J, Charlton MP (1999) Non-myelin-forming Perisynaptic Schwann cells express protein zero and myelin-associated glycoprotein. Glia, 27: 101–109.
  • 9. Giese KP, Martini L, Lemke G, Soriano P, Schachner M (1992) Mouse P0 gene disruption leads to hypomyelination, abnormal expression of recognition molecules, and degeneration of myelin and axons. Cell, 71: 565–576.
  • 10. Hof PR, Trapp BD, de Vellis J, Claudio L, Colman DR (1999) The cellular components of nervous tissue. In: Zigmond MJ, Bloom FE, Landis SC, Roberts JL, Squire LR (eds.). Fundamental neuroscience. Academic Press, San Diego, London, Boston, New York, Sydney, Tokyo, Toronto, 41–70.
  • 11. Jaakkala S, Savunen O, Halme T, Uitto J, Peltonen J (1993) Basement membranes during development of human nerve: Schwann cells and perineurial cells display marked changes in their expression profiles for laminin subunits and b1 and b4 integrins. J Neurocytol, 22: 215–230.
  • 12. Jessen K R, Mirsky R (1998) Origin and early development of Schwann cells. Microsc Res Tech, 41: 393–402.
  • 13. Kamiguchi H, Hlavin ML, Yamasaki M, Lemmon V (1998) Adhesion molecules and inherited disease of the human nervous system. Ann Rev Neurosci, 21: 97–125.
  • 14. Le Douarin N, Dulac C, Dupin E, Cameron-Curry P (1991) Glial cell lineages in the neural crest. Glia, 4: 175–184.
  • 15. Leivo I, Engvall E (1988) Merosin, a protein specific for basement membranes of Schwann cells, striated muscle, and trophoblast, is expressed late in nerve and muscle development. Proc Natl Acad Sci USA, 85: 1544–1548.
  • 16. Lemke G (2001) Glial control of neuronal development. Ann Rev Neurosci, 24: 87–105.
  • 17. Lemke G, Axel R (1985) Isolation and sequence of the gene encoding the major structural protein of peripheral myelin. Cell, 40: 501–513.
  • 18. Luo L, O’Leary DDM (2005) Axon retraction and degeneration in development and disease. Ann Rev Neurosci, 28: 127–156.
  • 19. Ochoa J (1971) The sural nerve of the human foetus: electron microscope observations and counts of axons. J Anat, 108: 231–245.
  • 20. Ochoa J, Mair WGP (1969) The normal sural nerve in man. I. Ultrastructure and numbers of fibers and cells. Acta Neuropathol, 13: 197–216.
  • 21. Rougon G, Hobert O (2003) New insights into the diversity and function of neuronal immunoglobulin superfamily molecules. Ann Rev Neurosci, 26: 207–238.
  • 22. Shapiro L, Fannon AM, Kwong PD, Thompson A, Lehmann MS, Grübel G, Legrand JF, Als-Nielson J, Colman DR, Hendrickon WA (1995) Structural basis of cell-cell adhesion by cadherins. Nature, 374: 327–337.
  • 23. Woźniak W (1982) Compact myelin formation in the human nerves during intra-uterine development. Folia Morphol, 41: 157–162.
  • 24. Woźniak W (1983) Axon diameter and myelin formation in the developing human nerves. Folia Morphol, 42: 63–66.
  • 25. Woźniak W, Bruska M (1986) Fine structure and myelination of the greater splanchnic nerves in human fetuses. Folia Morphol, 45: 192–205.
  • 26. Woźniak W, O’Rahilly R (1981) Fine structure and myelination of the developing human vagus nerve. Acta Anat, 109: 218–230.
  • 27. Woźniak W, O’Rahilly R, Bruska M (1982) Myelination of the human fetal phrenic nerve. Acta Anat, 112: 281–296.
  • 28. Zorick TS, Lemke G (1996) Schwann cell differentiation. Curr Opin Cell Biol, 8: 870–876.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-8cd65883-8448-438d-bafd-46cad1c29520
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.