PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 56 | 3 |

Tytuł artykułu

FAME profiles in Pseudomonas vesicularis during catechol and phenol degradation in the presence of glucose as an additional carbon source

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of this study was to evaluate the impact of catechol and phenol added to culture media separately and with glucose as an additional, easily-degradable carbon source on fatty acid methyl ester (FAME) composition in Pseudomonas vesicularis. Simultaneously, the degradation rates of aromatic substrates used were investigated in single and binary substrate systems. Both catechol and phenol treatments caused changes in the distribution of tested groups of fatty acids. The most noticeable changes included an increase in degree of fatty acid saturation, the appearance of branched and disappearance of hydroxy fatty acids as compared to the control sample with glucose. Under catechol or phenol treatment sat/unsat ratio showed the values of 8.63 and 11.38, respectively, whereas in control cells it reached the value of 2.66. The high level of saturation comes from the high content of cyclopropane fatty acids in bacteria under exposure to aromatic substrates, regardless of the presence of glucose. In these treatments their content was more than 3-fold higher compared to the control. It has been demonstrated that glucose supplementation of culture media containing single aromatic substrate extended the degradation rates of catechol and phenol by P. vesicularis, caused an increase in number of cells but did not significantly change the fatty acid profiles in comparison with bacteria growing on catechol and phenol added to the media individually.

Wydawca

-

Rocznik

Tom

56

Numer

3

Opis fizyczny

p.157-164,fig.,ref.

Twórcy

autor
  • University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
autor

Bibliografia

  • Ahamad P.Y.A. and A.A.M. Kunhi. 1996. Degradation of phenol through ort/io-cleavage pathway by Pseudomonas stutzeri strain SPC2. Lett. Appl. Microbiol. 22: 26-29.
  • Ali S., R. Fernandez-Lafuente and D.A. Cowan. 1998. Meta-pathway degradation of phenolics by thermophilics bacilli. Enz. Microb. Technol. 23: 462-468.
  • Ampe F., D. Leonard and N.D. Lindley. 1998. Repression of phenol catabolism by organic acids in Ralstonia eutropha. Appl. Environ. Microbiol. 64: 1-6.
  • Beendorf D., N. Loffhagen and W. Babel. 2001. Protein synthesis patterns in Acinetobacter calcoaceticus induced by phenol and catechol show specificities of responses to chemostress. FEMS Microbiol. Lett. 200: 247-252.
  • Bradford M.M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
  • Chang B.V., W.B. Wu and S.Y. Yuan. 1997. Biodegradation of benzene, toluene, and other aromatic compounds by Pseudomonas sp. D8. Chemosphere 35: 2807-2815.
  • Denich T.J., L.A. Beaudette, H. Lee and J.T. Trevors. 2003. Effect of selected environmental and physico-chemical factors on bacterial cytoplasmatic membranes. J. Microbiol. Meth. 52: 149-182.
  • Duetz W., S. Marques, B. Wind, J.L. Ramos and J.G. van Andel. 1996. Catabolite repression of the toluene degradation pathway in Pseudomonas putida harbouring pWWO under various conditions of nutrient limitation in chemostat culture. Appl. Environ. Microbiol. 62: 601-601.
  • Evans W.C. 1946. Oxidation of phenol and benzoic acid by some soil bacteria. Biochem. J. 41: 373-382.
  • Fang J., N. Lovanh and P.J.J. Alvarez. 2004. The use of iso-topic and lipid analysis techniques linking toluene degradation to specific microorganisms: applications and limitations. Water Res. 38: 2529-2536.
  • Feist CF. and CD. Hegeman. 1969. Regulation of the meta cleavage pathways for benzoate oxidation by Pseudomonas putida. J. Bacteriol. 100: 1121-1128.
  • Gutierrez J.A., P. Nichols and I. Couperwhite. 1999. Changes in whole cell-derived fatty acids induced by benzene and occurrence of the unusual 16:lu6c in Rhodococcus sp. 33. FEMS Microbiol. Lett. 176: 213-218.
  • Härtig C, N. Loffhagen and H. Harms. 2005. Formation of trans fatty acids is not involved in growth-linked membrane adaptation of Pseudomonas putida. Appl. Environ. Microbiol. 71: 1915-1922.
  • Heesche-Wagner K., T. Schwarz and M. Kaufmann. 1999. Phenol degradation by an enterobacterium: a Klebsiella strain carries a TOL-like plasmid and a gene encoding phenol hydroxylase. Can. J. Microbiol. 45: 162-171.
  • Heipieper H.J., R. Dieffenbach and H. Keweloh. 1992. Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl. Environ. Microbiol. 58: 1847-1852.
  • Heipieper H.J., F.J. Weber, J. Sikkema, H. Keweloh and J.A.M. de Bont. 1994. Mechanisms of resistance of whole cells to toxic organic solvents. Trends Biotechnol. 12: 409-415.
  • Kao C.M., J.K. Liu, Y.L.Chen, CT. Chai and S.C Chen. 2005. Factors affecting the biodégradation of PCP by Pseudomonas mendocina NSYSU. J. Hazard. Mat. B124: 68-73.
  • Kabelitz N., P.M. Santos and H.J. Heipieper. 2003. Effect of aliphatic alcohols on growth and degree of saturation of membrane lipids in Acinetobacter calcoaceticus. FEMS Microbiol. Lett. 220: 223-227.
  • Keweloh H., G. Weyrauh and H.J. Rehm. 1990. Phenol-induced membrane changes in free and immobilized Escherichia coli. Appl. Environ. Biotechnol. 33: 66-71.
  • Kim I.S., H. Lee and J.T. Trevors. 2001. Effects of 2,2' ,5,5'-tetrachlorobiphenyl and biphenyl on cell membranes of Ralstonia eutropha H850. FEMS Microbiol. Lett. 200: 17-24.
  • Kojima Y., N. Itada and O. Hayaishi. 1961. Merapyrocatechase a new catechol cleaving enzyme. J. Biol. Chem. 236: 2223-2231.
  • Loh K.C and S.J. Wang. 1998. Enhancement of biodégradation of phenol and a nongrowth substrate 4-chlorophenol by medium augmentation with conventional carbon sources. Biodegradation 8: 329-338.
  • Lurie J. and I. Rybnikova. 1968. Chemical Analysis of Industrial Sewages (in Russian). Gaschmizdat, Moskwa.
  • Morales G., J.F. Linares, A. Belosso, J.P. Albar, J.L Martizez and F. Rojo. 2004. The Pseudomonas putida Crc global regulator controls the expression of genes from several chromosomal catabolic pathways for aromatic compounds. J. Bacteriol. 186: 1337-1343.
  • Mrozik A., S. Łabużek and Z. Piotrowska-Seget. 2005. Changes in fatty acid composition in Pseudomonas putida and Pseudomonas stutzeri during naphthalene degradation. Microbiol. Res. 160: 149-157.
  • Mrozik A., Z. Piotrowska-Seget and S. Łabużek. 2006. Cellular fatty acid patterns in Pseudomonas sp. CF600 during catechol and phenol degradation in media supplemented with glucose as an additional carbon source. Ann. Microbiol. 56: 57-64.
  • Petruschka L., G. Burchhardt, C. Müller, C. Weihe and H. Herrmann. 2001. The cyo operon of Pseudomonas putida is involved in carbon catabolite repression of phenol degradation. Mol. Genet. Genomics 266: 199-206.
  • Ramos J.L., E. Duque, J.J. Rodriquez-Herva, P. Godoy, A. Haidour, F. Reyes and A. Fernanadez-Barrero. 1997. Mechanisms for solvent tolerance in bacteria. J. Biol. Chem. 272: 3887-3890.
  • Saier M.H. Jr. 1996. Regulatory interactions controlling carbon metabolism: an overview. Res. Microbiol. 147: 639-447.
  • Šajbidor J. 1997. Effect of some environmental factors on the content and composition of microbial membrane lipids. Crit. Rev. Biotechnol. 17: 87-103.
  • Sasser M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. Microbial ID, Inc., Newark (USA).
  • Shinitzky M. 1984. Physiology of Membrane Fluidity. Vol. 1, pp. 1-52, CRC Press, Boca Raton , USA.
  • Sikkema J., F.J. Weber, H.J. Heipieper and J.A.M. de Bont. 1994. Cellular toxicity of lipophilic compounds: mechanisms, implications and adaptations. Biocatalysis 10: 113-122.
  • Sikkema J., J.A.M. de Bont and B. Poolman. 1995. Mechanism of membrane toxicity of hydrocarbons. Microbiol. Rev. 59: 201-222.
  • Stülke J. and W. Hillen. 1999. Carbon catabolite repression in bacteria. Curr. Opin. Microbiol. 2: 195-201.
  • Tian L., P. Ma and J-J. Zhong. 2003. Impact of the presence of salicylate or glucose on enzyme activity and phenanthrene degradation by Pseudomonas mendocina. Proc. Biochem. 38: 1125-1132.
  • Tsitko I.V., G.M. Zaitsev, A.G. Lobanok and M.S. Salkinoja-Salonen. 1999. Effect of aromatic compounds on cellular fatty acid composition of Rhodococcus opacus. Appl. Environ. Microbiol. 65: 853-855.
  • Van Herwijnen R., B.F. van de Sande, F.W.M. van der Wielen, D. Springael, H.A.J. Covers and J.R. Parsons. 2003. Influence of phenanthrene and fluoranthene on the degradation of fluorene and glucose by Sphingomonas sp. strain LB 126 in chemostat cultures. FEMS Microbiol. Ecol. 46: 105-11.
  • Wang K.W., B.C. Baltzis and G.A. Lewandowski. 1996. Kinetics of phenol biodégradation in the presence of glucose. Biotechnol. Bioeng. 51: 87-94.
  • Wang S.J. and K.C. Loh. 1999. Facilitation of cometabolic degradation of 4-chlorophenol using glucose as an added growth substrate. Biodegradation 10: 261-269.
  • Wang S.J. and K.C. Loh. 2001. Biotransformation kinetics of Pseudomonas putida for cometabolism of phenol and 4-chlorophenol in the presence of sodium glutamate. Biodegradation 12: 189-199.
  • Weber F.J. and J.A.M. de Bont. 1996. Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochem. Biophys. Acta 1286: 225-245.
  • Yu J. and O.P. Ward. 1994. Studies on factors influencing the biodégradation of pentachlorophenol by mixed bacteria culture. Int. Biodeter. Biodeg. 34: 209-221.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-8baced12-f313-4ae3-bd96-4b8460fe5079
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.