PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1999 | 46 | 3 |

Tytuł artykułu

Protein inhibitors of serine proteinases

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Serine proteinases and their natural protein inhibitors belong to the most intensively studied models of protein-protein recognition. Protein inhibitors do not form a single group but can be divided into about 20 different families. Global structures of proteins representing different inhibitor families are completely different and comprise α-helical proteins, β-sheet proteins,α/β-proteins and different folds of small disulfide-rich proteins. Three different types of inhibitors can be distinguished: canonical (standard mechanism) inhibitors, non-canonical inhibitors, and serpins. The canonical inhibitor binds to the enzyme through the exposed and convex binding loop, which is complementary to the active site of the enzyme. The mechanism of inhibition in this group is consistently very similar and resembles that of an ideal substrate. Non-canonical inhibitors, originating from blood sucking organisms, specifically block enzymes of the blood clotting cascade. The interaction is mediated through inhibitor N-terminus which binds to the proteinase forming a parallel β-sheet. There are also extensive secondary interactions which provide an additional buried area and contribute significantly to the strength and specificity of recognition. Serpins are major proteinase inhibitors occurring in plasma. Similarly to canonical inhibitors, serpins interact with their target proteinases in a substrate-like manner. However, in the case of serpins, cleavage of a single peptide bond in a flexible and exposed binding loop leads to dramatic structural changes.

Wydawca

-

Rocznik

Tom

46

Numer

3

Opis fizyczny

p.531-565,fig.

Twórcy

autor
  • University of Wroclaw, Tamka 2, 50-137 Wroclaw, Poland
autor
autor

Bibliografia

  • Aertgeerts, K., De Bondt, H., De Ranter, C.J. & Declerck, P.J. (1995) Mechanisms contribut­ing to the conformational and functional flexi­bility of plasminogen activator inhibitor-1. Na­ture Struct. BioL 2, 891-897.
  • Antonini, E., Ascenzi, P., Bolognesi, M., Gatti, G., Guarneri, M. & Menegatti, E. (1983) Interac­tion between (pro)enzyms and Kazal and Kunitz inhibitors. J. MoL BioL 165,543-558.
  • Antuch, W., Berndt, K.D., Chavez, M.A., Delfin, J. & Wiithrich, K. (1993) The NMR solution structure of a Kunitz-type proteinase inhibitor from the sea anemone Stichodactyla helianthus. Eur. J. Biochem. 212, 675-684.
  • Antuch, W., Guntert, P., Billeter, M., Hawthorne, T., Grossenbacher, H. & Wiithrich, K. (1994) NMR solution structure of the recombinant tick anticoagulant protein (rTAP), a factor Xa inhibitor from the tick Ornthodoros moubata. FEBS Lett. 352, 251-257.
  • Apostoluk, W. & Otlewski, J. (1998) Variability of the canonical loop conformations in serine proteinases inhibitors and other proteins. Pro teins: Struct Fund. Genet. 32, 459-474.
  • Ardelt, W. & Laskowski, M., Jr. (1983). Thermody­namics and kinetics of the hydrolysis and re- synthesis of the reactive site peptide bond in turkey ovomucoid third domain by asper- gillopeptidase B. Acta Biochim, Polon. 30, 115-126.
  • Ardelt, W. & Laskowsk* M., Jr. (1985) Turkey ovomucoid third domain inhibits eight differ­ent serine proteinases of varied specificity on the same... Leul8 - Glul9... reactive site. Bio­chemistry 24, 5313-5320.
  • Ardelt, W. & Laskowski, M., Jr. (1991) Effect of single amino acid replacements on the thermo­dynamics of the reactive site peptide bond hy­drolysis in ovomucoid third domain. J. Mol Biol 220, 1041-1053.
  • Ascenzi, P., Amiconi, G., Coletta, M., Lupidi, G., Menegatti, E., Onesti, S. & Bolognesi, M. (1992) Binding of hirudin to afi and y-thrombin. A comparative kinetic and ther­modynamic study. J. Mol Biol 225.177-184.
  • Baumann, U., Huber, R., Bode, W., Grosse, D., Lesjak, M. & Laurell, C. B. (1991a) Crystal structure of cleaved human «j-anti- chymotrypsin at 2.7 A resolution and its com parison with other serpins. J. Mol Biol 218, 595- 606.
  • Baumann, U., Bode, W., Huber, R., Travis, J. & Potempa, J. (1991b) Crystal structure of cleaved equine leucocyte elastase inhibitor de­termined at 1.95 A resolution. J. Mol Biol 226, 1207-1218.
  • Beckmann, J., Mehlich, A., Schroder, W., Wenzel, H.R. & Tschesche, H. (1988) Preparation of chemically 'mutate' aprotinin homologues by semisynthesis. P^ substitutions change inhibi­tory specificity. Eur. J. Biochem. 176, 675-682.
  • Beeser, S.A., Goldenberg, D.P. & Oas, T.G. (1997) Enhanced protein flexibility caused by a destabilizing amino acid replacement in BPTI. J. Mol Bicl 269, 154-164.
  • Behnke, C.A., Yee, V.C., Trong, I.L., Pedersen, L.C., Stenkamp, R.E., Kim, S.S., Reeck, G.R. & Teller, D.C. (1998) Structural determinants of the Afunctional corn Hageman factor inhib­itor: X-ray crystal structure at 1.95 A resolu­tion. Biochemistry 37, 15277-15288.
  • Berndt, K.D., Guntert, P., Orbons, L.P. & Wiithrich, K. (1992) Determination of a high quality nuclear magnetic resonance solution structure of the bovine pancreatic trypsin in­hibitor and comparison with three crystal structures. J. Mol Biol 227, 757-775.
  • Betzel, C., Dauter, Z., Genov, N., Lamzin, V., Navaza, J., Schnebli, H.P., Visanji, M. & Wil­son, K.P. (1993) Structure of the proteinase in­hibitor eglin c with hydrolysed reactive center at 2.0 A resolution. FEBSLett. 317,185-188.
  • Bjôrk, I., Ylinenjàrvi, K., Olson, S.T. & Bock, P.E. (1992) Conversion of antithrombin from an in­hibitor of thrombin to a substrate with re­duced heparin affinity and enhanced conformational stability by binding of a tetradecapeptide corresponding to the P1-P14 region of the putative reactive bond loop of the inhibitor. J. Biol Chem. 267, 1976-1982.
  • Bode, W. (1979) The transition of bovine trypsinogen to a trypsin-like state upon strong ligand binding. II. The binding of the pancre­atic trypsin inhibitor and of isoleucine-valine and of sequentially related peptides to trypsi­nogen and to p-guanidinobenzoate-try- psinogen J. Mol Biol 127, 357-374.
  • Bode, W., Epp, O., Huber, R., Laskowski, M., Jr. & Ardelt, W. (1985) The crystal and molecular structure of the third domain of silver pheas­ant ovomucoid (OMSVP3). Eur. J. Biochem 147, 387-395.
  • Bode, W., Schwager, P. & Huber, R. (1978) The transition of bovine trypsinogen to a trypsin- like state upon ligand binding. The refined crystal structures of bovine trypsinogen-pancreatic trypsin inhibitor com­plex and of its ternary complex with the Ile-Val at 1.9 A resolution. J. Mol Biol 118, 99-112.
  • Bode, W., Wei, A.-Z., Huber, R., Meyer, E., Travis, J. & Neuman, S. (1986a) X-ray crystal struc­ture of the complex of human leukocyte elastase (PMN elastase) and the third domain of turkey ovomucoid inhibitor. EMBO J. 5, 2453-2458.
  • Bode, W., Papamokos, E., Musil, D., Seemiiller, U. & Fritz, H. (1986b) Refined 1.2 A crystal struc­ture of the complex formed between subtilisin Carlsberg and the inhibitor eglin c. EMBO J. 5, 813-818.
  • Bode, W., Greyling, H.J., Huber, R., Otlewski, J. & Wilusz, T. (1989) The refined 2.0 A X-ray crys­tal structure of the complex formed between bovine ^-trypsin and CMTI-I, a trypsin inhibi­tor from squash seeds (Cucurbita maxima): Topological similarity of the squash seed in­hibitors with the carboxypeptidase A inhibitor from potatoes. FEBS Lett. 242, 285-292.
  • Bode, W. & Huber, R. (1992) Natural protein proteinase inhibitors and their interaction with proteinases. Eur. J. Biochem. 204, 433-451.
  • Bolognesi, M., Gatti, G., Menegatti, E., Guarneri, M., Marquart, M., Papamokos, E. & Huber, R. (1982) Three-dimensional structure of the complex between pancreatic secretory trypsin inhibitor (Kazal type) and trypsinogen at 1.8 A resolution. J. Mol Biol 162, 839-868.
  • Bolognesi, M., Pugliese, L., Gatti, G., Frigero, F., Coda, A., Antolini, L., Schnebli, H.P., Menegatti, E., Amiconi, G. & Ascenzi, P. (1990) X-ray crystal structure of the bovine a-chymotrypsin/eglin c complex at 2.6 A reso­lution. J. Mol Recogn. 3, 163-168.
  • Bruch, M., Weiss, V. & Engel, J. (1988) Plasma serine proteinase inhibitors (serpins) exhibit major conformational changes and a large in­crease in conformational stability upon cleav­age at their reactive sites. J. Biol. Chem. 263, 16626-16630.
  • Burgering, M.J.M., Orbons, L.P.M., van der Doelen, A., Mulders, J., Theunissen, H.J.M., Grootenhuis, P.D.J., Bode, W., Huber, R. & Stubbs, M.T. (1997) The second Kunitz do­main of human tissue factor pathway inhibi­tor: Cloning, structure determination and in­teraction with factor Xa. J. Mol Biol 269, 395-407.
  • Cai, M., Gong, Y., Kao, J.L.-F. & Krishnamoorthi, R. (1995a) Three-dimensional solution struc­ture of Cucurbita maxima trypsin inhibitor-V determined by NMR spectroscopy. Biochemis­try 34, 5201-5211.
  • Cai, M., Gong, Y., Prakash, O. & Krishnamoorthi, R. (1995b) Reactive-site hydrolyzed Cucurbita maxima trypsin inhibitor-V: Function, thermo­dynamic stability, and NMR solution struc­ture. Biochemistry 34, 12088-12094.
  • Cai, M., Huang, Y., Prakaah, O., Wen, L., Dunkelbarger, S.P., Huang, J.K., Liu, J. & Krishnamoorthi, R. (1996) Differential modu­lation of binding loop flexibility and stability by Arg50 and Arg52 in Cucurbita maxima trypsin inhibitor-V deduced by trypsin-cat&lyzed hydrolysis and NMR spec­troscopy. Biochemistry 35, 4784-4794.
  • Carrell, R.W., Stein, P.E., Fermi, G. & Wardell, M.R. (1994) Biological implications of a 3 A structure of dimeric antithrombin. Structure 2, 257-270.
  • Carrell, R., Lomas, D., Stein, P. & Whiststock, J. (1997) Dysfunctional variants and the struc­tural biology of the serpins. Adv. Exp. Med. Biol 425, 207-222.
  • Castro, M.J.M. & Anderson, S. (1996) Alanine pointmutations in the reactive region of bo­vine pancreatic trypsin inhibitor: Effects on the kinetics and thermodynamics of binding to trypsin and «-chymotrypsin. Biochemistry 35, 11435-11446.
  • Chen, Z. & Bode, W. (1983) Refined 2.5 A X-ray crystal structure of the complex formed by porcine kallikrein A and the bovine pancreatic trypsin inhibitor: Crystallisation, Patterson search, structure determination, refinement, structure and comparison with its compo­nents and with the bovine trypsin-pancreatic trypsin inhibitor complex. J. Mol Biol 164, 283-311.
  • Chen, P., Rose. J., Love, R., Wei, C.H. & Wang, B.C. (1992) Reactive sites of an anticarcino- genic Bowman-Birk proteinase inhibitor are similar to other trypsin inhibitors. J. Biol Chem. 267, 1990-1994.
  • Chiche, L., Gaboriaud, C., Heitz, A., Mornon, J.-P., Castro, B. & Kollman, P.A. (1989) Use of re­strained molecular dynamics in water to de­termine three dimensional protein structure: Prediction of the three dimensional structure of Ecballium elaterium trypsin inhibitor II. Proteins: Struct Fund. Genet 6, 405-417.
  • Chiche, L., Heitz, A., Padilla, A., Le-Nguyen, D. & Castro, B. (1993) Solution conformation of synthetic bis-headed inhibitor of trypsin and carboxypeptidase A: New structural alignment between the squash inhibitor and the potato carboxypepridase inhibitor. Protein Engng. 6, 675-682.
  • Czapinska, H. & Otlewski, J. (1999) Structural and energetic determinants of the Sj site specific­ity in serine proteases. Eur. J. Biochem. 260, 571-595.
  • Dattagupta, J.X., Podder, A., Chakrabarti, C., Sen, U., Mukhopadhyay, D., Dutta, S.K. & Singh, M. (1999) Refined crystal structure (2.3 A) of a double-headed winged bean al- pha-chymotrypsin inhibitor and location of its second reactive site. Proteins 35, 321-331.
  • Dauter, Z., Genov, N., Pipon, N., Wilson, K.S. & Betzel, C. (1991) Complex between the subtilisin from a mesophilic bacterium and the leech inhibitor eglin-c. Acta Cryst. B47, 707-730.
  • Delarue, M., Samama, J.-P., Mourey, J.-P. & Moras, D. (1990) Crystal structure of bovine antithrombin III. Acta Crystallog. B46, 550-556.
  • Dennis, M.S. & Lazarus, R.A. (1994a) Kunitz do­main inhibitors of tissue factor — factor Vila: I. Potent inhibitors selected from libraries by phage display. J. Biol Chem. 269, 22129- 22136.
  • Dennis, M.S. & Lazarus, R.A. (1994b) Kunitz do­main inhibitors of tissue factor — factor Vila: II. Potent and specific inhibitors by competi­tive phage selection. J. Biol Chem. 269, 22137-22144.
  • Elliott, P.R., Lomas, D.A., Carrell, R.W. & Abrahams, J.P. (1996) Inhibitory conforma­tion of the reactive loop of alpha 1-antitrypsin. Nature Strixt. Biol 3, 676-681.
  • Engh, R., Lobermann, H., Schneider, M., Wiegand, G., Huber, R. & Laurell, C.B. (1989) The S variant of human alpha 1-antitrypsin, structure and implications for function and metabolism. Protein Engng. 2, 407-415.
  • Estell, D.A., Wilson, K.A. & Laskowski, M., Jr. (1980) Thermodynamics and kinetics of the hydrolysis of the reactive-site peptide bond in pancreatic trypsin inhibitor (Kunitz) by Dermasterias imbricata trypsin 1. Biochemistry 19, 131-137.
  • Finkenstadt, W.R. & Laskowski, M., Jr. (1967) Re- synthesis by trypsin of the cleaved peptide bond in modified soybean trypsin inhibitor. J. Biol Chem. 242, 771-773.
  • Finkenstadt, W.R., Hamid, M.A., Mattis, J.A., Schrode, J.A., Sealock, R.W. & Laskowski, M., Jr. (1974) Kinetics and thermodynamics of the interaction of proteinases with protein inhibi­tors. Bayer-Symposium V (Fritz, H., Tschesche, H., Greene, L.J. & Truscheit, E. eds.) pp. 389-411, Springer-Verlag, Berlin.
  • Folkers, P.J.M., Clore, G.M., Driscoll, P.C., Dodt, J., Khler, S. & Gronenborn, A.M. (1989) Solu­tion structure of recombinant hirudin and the Lys-47-Glu mutant: A nuclear magnetic reso­nance and hybrid distance geometry-dyna­mical simulated annealing study. Biochemistry 28, 2601-2617.
  • Francart, C., Dauchez, M., Alix, A.J.P. & Lippens, G. (1997) Solution structure of R-elafin, a spe­cific inhibitor of elastase. J. Mol Biol 268, 666-677.
  • Fuentes-Prior, P., Noeske-Jungblut, C., Donner, P., Schleuning, W.-D., Huber, R. & Bode, W. (1997) Structure of thrombin complex with triabin, a lipocalin-like exosite-binding inhibi­tor derived from a triatomine bug. Proc. Natl Acad. ScL U.S.A. 94, 11845-11850.
  • Fujinaga, M., Read, R.J., Sielecki, A., Ardelt, W., Laskowski, M., Jr. & James, M.N.G. (1982) Re­fined crystal structure of the molecular com plex of Streptomyces griseus protease B, a serine protease, with the third domain of the ovomucoid inhibitor from turkey. Proc. Natl Acad. SaI U.S.A. 79, 4868-4872.
  • Fujinaga, M., Sielecki, A.R., Read, R.J., Ardelt, W., Laskowski, M., Jr. & James, M.N.G. (1987) Crystal and molecular structures of the com­plex of ff-chymotrypsin with its inhibitor tur­key ovomucoid third domain at 1.8 A resolu­tion. J. Mol Biol 195, 397-418.
  • Gourinath, S., Srinisvasan, A. & Singh, T.P. (1999) Structure of the Afunctional inhibitor of trypsin and cr-amylase from ragi seeds at 2.9 A resolution. Acta Cryst D55, 25-30.
  • Grasberger, B.L., Clore, G.M. & Gronenborn, A.M. (1994) High-resolution structure of Ascaris trypsin inhibitor in solution: Direct ev­idence for a pH-induced conformational tran­sition in the reactive site. Structure 2, 669-678.
  • Ureenblatt, H.M., Ryan, OA. & James, M.N.G. (1989) Structure of the complex of Strepto- myces griseus proteinase B and polypeptide chymotrypsin inhibitor-1 from Russet Burbank potato tubers at 2.1 A resolution. J. Mol Biol 205, 201-225.
  • Gros, P., Teplyakov, A.V. & Hoi, W.G.J. (1992) Ef­fects of eglin-c binding to thermitase: three-dimensional structure comparison of na­tive thermitase and thermitase eglin-c com­plexes. Proteins: Struct. Funct. Genet. 12, 63-70.
  • Griitter, M.G., Fendrich, G., Huber, R. & Bode, W. (1988) The 2.5 A X-ray crystal structure of the acid-stable proteinase inhibitor from human mucous secretions analysed in its complex with bovine cr-chymotrypsin. EMBO J. 7, 345-351.
  • Griitter, M.G., Priestle, J.P., Rahuel, J., Gross- enbacher, H., Bode, W., Hofsteenge, J. & Stone, S.R. (1990) Crystal structure of the thrombin-hirudin complex: A novel mode of serine protease inhibition. EMBO J. 9, 2361-2365.
  • Harding, L., Scott, R.H., Kellenberger, C., Hietter, H., Luu, B., Beadle, D J. & Bermudez, I. (1995) Inhibition of high voltage-activated Ca cur­rents from cultured sensory neurones by a novel insect peptide. J. RcepL Signal Trans- duct. Res. 15, 355-364.
  • Harrop, S.J., Jankova, L., Coles, M., Jardine, D., Whittaker, J.S., Gould, A.R., Meister, A., King, G.C., Mabbutt, B.C. & Curmi, P.M.G. (1999) The crystal structure of plasminogen activator inhibitor 2 at 2.0 A resolution: Impli­cations for serpin function. Structure 7, 43 54.
  • Heald, S.L., Tilton, R.F., Jr., Hammond, L.J., Lee, A., Bayney, R.M., Kamarck, M.E., Rama- bhadran, T.V., Dreyer, R.N., Davis, G., Unterbeck. A. & Tambutini, P.P. (1991) Se­quential NMR resonance assignment and structure determination of the Kunitz-type in­hibitor domain of the Alzheimer's -amyloid precursor protein. Biochemistry 30, 10467- 10478.
  • Hecht, H.J., Szardenings, M., Collins. J. & Schomburg, D. (1991) Three dimensional structure of the complexes between bovine chymotrypsinogen A and two recombinant variants of human pancreatic secretory trypsin inhibitor (Kazal-type). J. Mol Biol 220, 711-722.
  • Hecht, H.J., Szardenings, M., Collins, J. & Schomburg, D. (1992) Three-dimensional structure of a recombinant variant of human pancreatic secretory trypsin inhibitor (Kazal- type). J. MoL Biol 225, 1095-1103.
  • Heitz, A., Chiche, L., Le-Nguyen, D. & Castro, B. (1989) 1H 2D NMR and distance geometry study of the folding of Ecbalium elaterium trypsin inhibitor, a member of the squash in­hibitor family. Biochemistry 28, 2392-2398.
  • Heinz, D.W., Priestle, J.P., Rahuel, J., Wilson, K.S. & Griitter, M.G. (1991) Refined crystal structures of subtilisin Novo in complex with wild-type and two mutant eglins. J. Mol Biol 217, 353-371.
  • Heinz, D.W., Hyberts, S.G., Peng, J.W., Priestle, J.P., Wagner, G. & Griitter, M.G. (1992) Changing the inhibitory specificity and func­tion of the proteinase inhibitor eglin c by site-directed mutagenesis: Functional and structural investigation. Biochemistry 31, 8755-8766.
  • Helland, R., Leiros, I., Berglund, G.I., Willassen, N.P. & Smalas, A.O. (1998) The crystal struc­ture of anionic salmon trypsin in complex with bovine pancreatic trypsin inhibitor. Eur. J. Biochem. 256, 317-324.
  • Helland, R., Berglund, G.I., Otlewski. J., Apostoluk, W., Andersen, O.A., Willassen, N.P. & Smalas, A.O. (1999a) High resolution crystal structures of three new trypsin-squash inhibitor complexes. Detailed comparison with other trypsins and their complexes. Acta Crysu D55, 139-148.
  • Helland, R., Otlewski, J., Sundheim, O., Dadlez, M. & Smalas, A.O. (1999b) The crystal struc­tures of the complexes between bovine /3-trypsin and ten PI variants of BPTI. J. Mol Biol 287, 923-942.
  • Hipler, K., Priestle, J.P., Rahuel, J. & Grütter, M. (1992) X-ray crystal structure of the serine proteinase inhibitor eglin c at 1.95 A resolu­tion. FEBS Lett 309, 139-145.
  • Holak, T.A., Gondol, D., Otlewski, J. & Wilusz, T. (1989) Determination of the complete three- dimensional structure of the trypsin inhibitor from squash seeds in aqueous solution by nu­clear magnetic resonance and a combination of distance geometry and dynamic simulated annealing. J. Mol Biol 210, 635-648.
  • Holak, T.A., Habazettl, J., Oschkinat, H. & Otlewski, J. (1991) Structure of proteins in so­lution derived from homonuclear three-dimen­sional NOE-NOE nuclear magnetic resonance spectroscopy. High resolution structure of squash trypsin inhibitor. J. Am. Chem Soc. 113, 3196-3198.
  • Hood, D.B., Huntington, J.A. & Gettins, P.G. (1994) £rrAntiproteinase inhibitor variant T345R. Influence of P14 residue on substrate and inhibitory pathways. Biochemistry 33, 8538-8547.
  • Huang. Q., Liu, S. & Tang, Y. (1992) Refined 1.6 A resolution crystal structure of the complex formed between porcine /J-trypsin and MCTI- A, a trypsin inhibitor of the squash family. J. Mol Biol. 229, 1022-1036.
  • Huang, K., Strynadka, N.C.J., Bernard, V.D. & James, M.N.G. (1994) The molecular structure of the complex of Ascaris chymotrypsin/elastase inhibitor with porcine elastase. Structure 2, 669-678.
  • Huang, K., Anderson, S., Laskowski, M., Jr. & James, M.N.G. (1995) Water molecules partic­ipate in proteinase-inhibitor interactions: Crystal structures of Leu 18, Ala 18 and Glyl8 variants of turkey ovomucoid inhibitor third domain coinplexed with Streptomyces griseus proteinase 3. PrvLt'ui ScL 4, 1985-1997.
  • Huber, R., Kukla, D., Bode, W., Schwager, P., Bartels, K., Deisenhofer, J. & Steigemann, W. (1974) Structure of the complex formed by bo­vine trypsin and bovine pancreatic trypsin in­hibitor. J. Mol Biol 89, 73-101.
  • Huber, R., Bode, W., Kukla, D., Kohl, U. & Ryan, C.A. (1975) The structure of the complex formed by bovine trypsin and bovine pancre­atic trypsin inhibitor. Structure of the anhydro-tryp8in-inhibitor complex. Biophys. Struct Mech. 1, 189-201.
  • Huber, R. & Bode, W. (1978) Structural basis of the activation and action of trypsin. Acc. Chem. Res. 11, 114-122.
  • Hurle, M.R., Marks, C.B., Kosen, P.A., Anderson, S. & Kuntz, I.D. (1990) Denaturantrdependent folding of bovine pancreatic trypsin inhibitor mutants with two-intact disulfide bonds. J. Mol Biol 29, 4410-4419.
  • Hyberts, S.G., Goldberg, M.S., Havel, T.F. & Wag­ner, G. (1992) The solution structure of eglin c based on measurements of many NOEs and coupling constants and its comaprison with X-ray structures. Protein ScL 1, 736-751.
  • Hynes, T.R., Randal, M., Kennedy, L.A., Eigenbrot, C. & Kossiakoff, A.A. (1990) X-ray crystal structure of the inhibitor domain of Alzheimer's amyloid /3-protein precursor. Bio­chemistry 29, 10018-10022.
  • Janin, J. & Chothia, C. (1990) The structure of pro­tein-protein recognition sites. J. Biol Chem. 265, 16027-16030.
  • Jin, L., Abrahams, J.P., Skinner, R., Petitou, M., Pike, R.N. & Carrell, R.W. (1997) The anticoag­ulant activation of antithrombin by heparin. Proc. Natl. Acad. Sci. U.S.A. 94,14683-14688.
  • Jones, S. & Thornton, J.M. (1996) Principles of protein-protein interactions. Proc. Natl. Acad Sci. U.S.A. 93, 13-20.
  • Kohfeld, E., Gôhring, W., Mayer, U., Zweckstetter, M., Holak, T.A., Chu, M.-L. & Timpl, R. (1996) Conversion of the Kunitz-type module of colla­gen VI into a highly active trypsin inhibitor by site-directed mutagenesis. Eur. J. Biochem 238, 333-340.
  • Kojima, S., Nishiyama, Y., Kumagai, I. & Miura, K. (1991) Inhibition of subtilisin BPN' by reac­tion site PI mutants of Streptomyces subtilisin inhibitor. J. Biochem. 109, 377-382.
  • Komiyama, T., Bigler, T.L., Yoshida, N., Noda, K. & Laskowski, M., Jr. (1991) Replacement of PI Leu 18 by Glu 18 in the reactive site of turkey ovomucoid third domain converts it into a strong inhibitor of Glu-specific Streptomyces griseus proteinase (GluSGP). J. Biol Chem. 266, 10727-10730.
  • Komiyama, T., Ray, C.A., Pickup, D.J., Howard, A.D., Thornberry, N.A., Peterson, E.P. & Salvesen, G. (1994) Inhibition of interleukin- lfi converting enzyme by the cowpox virus serpin CrmA. J. Biol Chem. 269, 19331- 19337.
  • Krezel, A.M., Darba, P., Robertson, A.D., Fejzo, J., Macura, S. & Markley, J.L. (1994) Solution structure of turkey ovomucoid third domain as determined from nuclear magnetic resonance data. J. Mol Biol 242, 203-214.
  • Krokoszynska, I. & Otlewski, J. (1996) Thermody­namic stability effects of single peptide bond hydrolysis in protein inhibitors of serine pro­teinases. J. Mol Biol 256, 793-802.
  • Krokoszynska, I., Dadlez, M. & Otlewski, J. (1998) Structure of aingle-disulfide variants of bovine pancreatic trypsin inhibitor (BPTI) as probed by their binding to bovine /^-trypsin. J. Mol Biol 275, 503-513.
  • Krowarsch, D., Dadlez, M., Buczek, O., Krokoszynska, I., Smalas, A.O. & Otlewski, J. (1999) Inter scaffolding additivity: Binding of Pj variants of bovine pancreatic trypsin inhib­itor to four serine proteases. J. Mol Biol 2S9, 175-186.
  • Krystek, S., Stouch, T. & Novotny, J. (1993) Affin­ity and specificity of serine endopeptidase- protein inhibitor interactions. J. Mol Biol 234, 661-679.
  • Lapatto, R., Krengel, U., Schreuder, H.A., Arkema, A., de Boer, B., Kalk, K.H., Hoi, W.G.J., Grootenhuis, P.D.J., Mulders, J.W.M., Dijkema, R., Theunissen, H.J.M. & Dijkstra, B. W. (1997) X-ray structure of anistasin at 1.9 A resolution and its modelled complex with blood coagulation factor Xa. EMBO J. 16, 5151-5161.
  • Laskowski, M., Jr. & Sealock, W.R. (1971) Protein proteinase inhibitors-molecular aspects. En­zymes 3, 376-457.
  • Laskowski, M., Jr. & Kato, I. (1980) Protein inhibi­tors of proteinases. Annu. Rev. Biochem. 49, 593-626.
  • Laskowski, M., Jr. (1986) Protein inhibitors of serine proteinases — mechanism and classifi­cation. Adv. Exp. Med. Biol 199, 1-17.
  • Laskowski, M., Jr., Kato, I., Ardelt, W., Cook, J., Denton, A., Empie, M.W., Kohr, W.J., Park, S J., Parks, K., Schatzley, B.L., Tyashiro, M., Vichot, G., Wheatley, H.E., Wieczorek, A. & Wieczorek, M. (1987) Ovomucoid third do­mains from 100 avian species: Isolation, se­quences, and hypervariability of enzyme-in­hibitor contact residues. Biochemistry 26, 202- 221.
  • Lawrence, D.A. (1997) The role of reactive-center loop mobility in the serpin inhibitory mecha­nism. Adv. Exp. Med. Biol 425, 99-108.
  • Lee, G.F., Lazarus, R.A. & Kelley, R.F. (1997) Po­tent Afunctional anticoagulants: Kunitz do­main-tissue factor fusion proteins. Biochemis­try 36, 5609-5611.
  • Lee, K.N., Im, H., Kang, S.W. & Yu, M.-H. (1998) Characterization of a human a ranti trypsin variant that is as stable as ovalbumin. J. Biol Chem. 273, 2509-2516.
  • Li, J., Wang, Z., Canagarajah, B., Jiang, H., Kanost, M. & Goldsmith, E.J. (1999) The structure of active serpin IK from Manduca sexta. Structure 7, 103-109.
  • Li de la Sierra, 1., Quillien, L., Flecker, P., Gueguen, J. & Brunie, S. (1999) Dimeric crys­tal structure of a Bowman-Birk protease inhib­itor from pea seeds. J. Mol. Biol. 285, 1195-1207.
  • Liepinsh, E., Berndt, K.D., Sillard, R., Mutt, V. & Otting, G. (1994) Solution structure and dy­namics of PEC-60, a protein of the Kazal type inhibitor family, determined by nuclear mag­netic resonance spectroscopy. J. Mol Biol 239, 137-153.
  • Lim-Wilby, M.S.L., HaUenga, K., de Maeyer, M., Lasters, I., Vlasuk, G.P. & Brunck, T.K. (1995) NMR structure determination of tick anticoag­ulant peptide (TAP). Protein Sci. 4,1178-1186.
  • Lin, G., Bode, W., Huber, R., Chi, C. & Engh, R.A. (1993) The 0.25 nm X-ray structure of the Bow­man-Birk type inhibitor from mung bean in ternary complex with porcine trypsin. Eur. J. Biochem. 212, 549-555.
  • Liu, J., Praskash, O., Huang, Y., Wen, L., Wen, J.J., Huang, J.-K. & Krishnamoorthi, R. (1996a) Internal mobility of reactive-site-hy- drolyzed recombinant Cucurbita maxima trypsin inhibitor-V characterized by NMR spectroscopy: Evidence for differential stabili­zation of newly formed C- and N-termini. Bio­chemistry 35, 12503-12510.
  • Liu, J., Prakash, 0., Cai, M., Gong, Y., Huang, Y., Wen, L., Wen, J.J., Huang, J.-K. & Krishnamoorthi, R. (1996b) Solution struc­ture and backbone dynamics of recombinant Cucurbita maxima trypsin inhibitor-V deter­mined by NMR spectroscopy. Biochemistry 35, 1516-1524.
  • Lomas, D.A., Elliott, P.R., Chang, W.S.W., War- del1, M.R. & Carrell, R.W. (1995) Preparation and characterization of latent al-antitrypsin. J. Biol Chem. 270, 5282-5288.
  • Lobermann, H., Tokuoka, R., Deisenhofer, J. & Huber, R. (1984) Human arproteinase inhibi­tor: Crystal structure analysis of two crystal modifications, molecular model and prelimi­nary analysis of the implications for function. J. Mol Biol 177, 531-557.
  • Lu, W., Zhang, W., Molloy, S.S., Thomas, G., Ryan, K., Chiang, Y., Anderson, S. & Laskowski, M., Jr. (1993) Arg15-Lys17-Arg18 turkey ovomucoid third domain inhibits hu­man furin. J. Biol Chem 268,14583-14585.
  • Lu, W., Qasim, M.A., Laskowski, M., Jr. & Kent, S.B.H. (1997a) Probing intermolecular main chain hydrogen bonding in serine proteinase- protein inhibitor complexes: Chemical synthe­sis of back-engineered turkey ovomucoid third domain. Biochemistry 36, 673-679.
  • Lu, W., Apostoł, I., Qasim, M.A., Warne, N., Wynn, R., Zhang, W.L., Anderson, S., Chiang, Y.W., Ogin, E., Rothberg, I., Ryan, K. & Laskowski, M., Jr. (1997b) Binding of amino acid side chain to Si cavities of serine protein­ases. J. Mcl BioL 266, 441-461.
  • Ludvigsen, S., Shen, H., Kjaer, M., Madsen, J.C. & Poulsen, P.M. (1991) Refinement of the three-dimensional solution structure of barley serine proteinase inhibitor 2 and comparison with the structures in crystals. J. Mol Biol 222, 621-635.
  • Lukacs, C.M., Rubin, H. & Christianson, D.W. (1998) Engineering an anion-binding cavity in antichymotrypsin modulates the "spring- loaded" serpin-protease interaction. Biochem­istry 37, 3297-3304.
  • Makhatadze. G.I., Kim, K.S., Woodward, C. & Privalov, P.L. (1993) Thermodynamics of BPTI folding. Protein Sci 2, 2028-2036.
  • Markland, W., Ley, A.C. & Ladner, R.C. (1996) It. erative optimization of high affinity protease inhibitors using phage display. 1. Plasmin. Biochemistry 35, 8058-8067.
  • Mathialagan, N. & Hansen, T.R. (1996) Pep­sin-inhibitory activity of the uterine serpins. Proc. Natl Acad. Sci U.S.A. 93,13653-13658.
  • McGrath, M.E., Engel, T., Bystroff, C. & Fletterick, R.J. (1994) Macromolecular chelation as an improved mechanism: Struc­ture of the ecotin-trypsin complex. EMBO J. 13, 1502-1507.
  • McGrath, M.E., Gillmor, S.A. & Fletterick, RJ. (1995) Ecotin: Lesson on survival in a prote- ase-filled world. Protein Sci, 4, 141-148.
  • McPhalen, C.A. & James, M.N.G. (1987) Crystal and molecular structure of the serine proteinase inhibitor CI-2 from barley seeds. Biochemistry 26, 261-269.
  • McPhalen. C.A. & James, M.N.G. (1988) Struc­tural comparison of two serine proteinase- protein inhibitor complexes: Eglin-c-subti- lisin Carlsberg and CI-2-subtilisin Novo. Bio­chemistry 27, 6582-6598.
  • Mer, G., Kellenberger, C., Koehl, P., Stote, R., Sorokine, 0., Van Dorsselaer, A.M., Luu, B., Hietter, H. & LefvSre, J.-F. (1994) Solution structure of PMP-D2, a 35-residue peptide iso­lated from the insect Locusta migratoria. Bio­chemistry 33, 15397-15407.
  • Mer, G., Hietter, H., Kellenberger, C., Renatus, M., Luu, B. & Lefvre, J.-F. (1996) Solution struc­ture of PMP-C: A new fold in the group of small serine proteinase inhibitors. J. Mol Biol 258, 158-171.
  • Merigeau, K., Arnoux, B., Perahia, D., Norris, K. & Ducruix, A. (1998) 1.2 A of the Kunitz-type domain from the 3 chain of human type VI col­lagen. Acta CrysL D54, 306-312.
  • Mitsui, Y., Satow, Y. & Sakamaki, T. (1977) Crystal structure of a protein protease inhibitor (Streptomyces subtilisin inhibitor) at 2.3 À res­olution. J. Biochem (Tbkyo) 82, 295 298.
  • Mittl, P.R.E., Di Marco, S., Fendrich, G., Pohlig, G., Heim, J., Sommerhoff, C., Fritz, H., Priestle, J.P. & Griitter, M.G. (1996) A new structural class of serine protease inhibitors revealed by the structure of the hirustasin- kallikrein complex. Structure 5, 253-264.
  • Morenweiser, R., Auerswald, E.A., van de Locht, A., Fritz, H., Strzebecher, J. & Stubbs, M.T. (1997) Structure-based design of a potent chi­meric thrombin inhibitor. J. Biol Chem. 272, 19938-19942.
  • Moses, E. & Hinz, H.-J. (1983) Basic pancreatic trypsin inhibitor has unusual thermodynamic stability parameters. J. Mol. Biol. 170, 765-776.
  • Mottonen, J., Strand, A.. Symersky, J., Sweet, R.M., Danley, D.E., Geoghegan, K.F., Gerard, R.D. & Goldsmith, E.J. (1992) Structural basis of latency in plasminogen activator inhibi­tor-1. Nature 355, 270-273.
  • Mourey, L., Samama, J.-P., Delarue, M., Petitou, M., Choay, J. & Moras, D. (1993) Crystal struc­ture of cleaved bovine antithrombin III at 3.2 A resolution. J. Mol Biol 232, 223-241.
  • Miihlhahn, P., Czisch, M., Morenweiser, R., Habermann, B., Engh, R.A., Sommerhoff, C.P., Auerswald, E.A. & Holak, T.A. (1994) Structure of leech derived tryptase inhibitor (LDTI-C) in solution. FEBS Lett. 355, 290-296.
  • Musil, D., Bode, W., Huber, R., Laskowski, M., Jr., Lin, T.-Y. & Ardelt, W. (1991) Refined X-ray crystal structures of the reactive site modified ovomucoid inhibitor third domains from silver pheasant (0MSVP3*) and from Japanese quail (OMJPQ3*). J. Mol Biol 220,739-755.
  • Nielsen, K.J., Alewood, D., Andrews, J., Kent, S.B.H. & Craik, D.J. (1994a) An 1H NMR de­termination of the three dimensional struc­tures of mirror image forms of a Leu-5 variant of the trypsin inhibitor from Ecbalium elater- ium (EETI ID. Protein Sci. 3, 291-302.
  • Nielsen, K.J., Heath, R.L., Anderson, M.A. & Craik, D.J. (1994b) The three dimensional so­lution structure by *H NMR of a 6-kDa proteinase inhibitor isolated from the stigma of Nicotiana alata. J. Mol. Biol 242,231-243.
  • Nielsen, K.J., Heath, R.L., Anderson, MA. & Craik, D.J. (1995) Structures of a series of 6-kDa trypsin inhibitors isolated from the stigma of Nicotiana alata. Biochemistry 34, 14304-14311.
  • Neurath, H. (1984) Evolution of proteolytic en­zymes. Science 224, 350-357.
  • Onesti, S., Brick, P. & Blow, D.M. (1991) Crystal structure of a Kunitz-type trypsin inhibitor from Erythrina caffra seeds. J. Mol Biol 217, 153-176.
  • Osmark, P., Sorensen, P. & Poulsen, F.M. (1993) Context dependent of protein secondary struc­ture formation: The three-dimensional struc­ture and stability of a hybrid between chymotrypsin inhibitor 2 and helix E from subtilisin Carlsberg. Biochemistry 32, 11007-11014.
  • Otlewski, J. & Zbyryt, T. (1994) Single peptide bond hydrolysis/resynthesis in squash inhibi­tors of serine proteinases. I. Kinetics and ther­modynamics of the interaction between squash inhibitors and bovine /^-trypsin. Bio­chemistry 33, 200-207.
  • Otlewski, J., Zbyryt, T., Dryjanski, M., Bulaj, G. & Wilusz, T. (1994) Single peptide bond hydroly­sis/resynthesis in squash inhibitors of serine proteinases. II. Limited proteolysis of Cucurbita maxima trypsin inhibitor I (CMTI I) by pepsin. Biochemistry 33, 208-213.
  • Pal, G.P., Kavounis, C.A., Jany, K.D. & Tserno- glou, D. (1994) The three-dimensional struc­ture of the complex of proteinase K with its naturally occurring inhibitor. FEBS Lett. 341, 167-170.
  • Peng. J.W. & Wagner, G. (1992) Mapping of the spectral densities of N-H bond motions in eglin c using heteronuclear relaxation experi­ments. Biochemistry 31, 8571-8586.
  • Pereira, P.J., Bergner, A., Macedo-Riberio, S., Huber, R., Matschiaer, G., Fritz, H., Sommer- hoff, C.P. & Bode, W. (1998) Human beta-tryptase is aring-like treatment with ac­tive sites facing a central pore. Nature 392, 306-311.
  • Perona, J.J., Tsu, C.A., Fletterick, R.J. & Craik, C.S. (1993) Crystal structures of rat anionic trypsin complexed with the protein inhibitors APPI and BPTI. J. MoL BiolI 230, 919-933.
  • Perona, J.J., Tsu, C.A., Craik, C.S. & Fletterick, R.J. (1997) Crystal structure of an ecotin- col- lagenase complex suggests a model for recog­nition and cleavage of the collagen triple helix. Biochemistry 36, 5381-5392.
  • Polanowska, J., Krokoszynska, I., Czapinska, H., Watorek, W., Dadlez, M. & Otiewski, J. (1998) Specificity of human cathepsin G. Biochim. Biophys. Acta 1386, 189-198.
  • Potempa, J., Korzus, E. & Travis, J. (1994) The serpin superfamily of proteinase inhibitors: structure, function, and regulation. J. Biol Chem. 269. 15957-15960.
  • Priestle, J.P. & Di Marco, S. (1997) Structure of the complex of leech-derived tryptase inhibitor (LDTI) with trypsin and modeling of the LD- TI-tryptase system. Structure 5, 1465-1474.
  • Qasim, M.A., Ranjbar, M.R., Wynn, R., Anderson, S. & Laskowski, M., Jr. (1995) Ionizable Pi res­idues in serine proteinase inhibitors undergo large pK shifts on complex formation. J. Biol Chem. 270, 1-4.
  • Qasim, M.A., Ganz, P.J., Saunders, C.W., Bate- man, K.S., James, M.N.G. & Laskowski, M., Jr. (1997) Interscaffolding additivity. Association of Pi variants of eglin c and of turkey ovomucoid third domain with serine protein­ases. Biochemistry 36, 1598-1607.
  • Quast, U., Engel, J., Steffen, E., Tschesche, H. & Kupfer, S. (1978) Kinetics of the interaction of a-chymotryp8in with trypsin kallikrein inhibi­tor (Kuuitz) in which the reactive-site peptide bond Lys-15-Alal6 is split. Eur. J. Biochem. 86, 353-360.
  • Read, R.J., Fujinaga, M., Sielecki, A.R. & James, M.N.G. (1983) Structure of the complex of Streptomyces griseus protease B and the third domain of the turkey ovomucoid inhibitor at 1.8 A resolution. Biochemistry 22,4420-4433.
  • Roberts, B.L., Markland, W., Ley, A.C., Kent, R.B., White, D.W., Guterman, S.K. & Ladner, R.C. (1992) Directed evolution of a protein: Se­lection of potent neutrophil elastase inhibitors displayed on M13 fusion phages. Proc. Natl Acad Sci. U.S.A. 89, 2429-2433.
  • Rydel, T.J., Ravichandran, K.G., Tulinsky, A., Bode, W., Huber, R., Roitsch, C. & Fenton, J.W. (1990) The structure of a complex of re­combinant hirudin and human a-thrombin. Science 249, 277-280.
  • Rydel, T.J., Tulinsky, A., Bode, W. & Huber, R. (1991) Refined structure of the hirudin- thrombin complex. J. Mol Biol. 221,583-601.
  • Ryu, S.-E., Choi, H.-J., Kwon, K.-S., Lee, K.N. & Yu, M.-H. (1996) The native strains in the hy­drophobic core and flexible reactive loop of a serine protease inhibitor: Crystal structure of an uncleaved aj-antitrypsin at 2.7 A. Structure 4, 1181-1192.
  • Schechter, I. & Berger, A. (1967) On the size of the active site in proteases. Biochem Biophys. Res. Commun. 27, 157-162.
  • Scheidig, A.J., Hynes, T.R., Pelletier, L.A., Wells, J.A. & Kossiakoff, A.A. (1997) Crystal struc­tures of bovine chymotrypsin and trypsin complexed to the inhibitor domain of Alzhei­mer's amyloid ^-precursor (APPI) and basic pancreatic trypsin inhibitor (BPTI): Engi­neering of inhibitors with altered specificities. Protein Sci 6, 1806-1824.
  • Schreuder, H.A., de Boer, B., Dijkema, R., Mulders, J., Theunissen, H.J.M., Grootenhuis, P.DJ. & Hoi, W.G.J. (1994) The intact and cleaved human antithrombin III complex as a model for serpin-proteinase interactions. Na­ture Struct Biol 1, 48-54.
  • Schulze, A.J., Baumann, U., Knof, S., Jaeger, E., Huber. R. & Laurell, C.B. (1990) Structural transition of alpha l-antitrypsin by a peptide sequentially similar to beta-strand s4A. Eur. J. Biochem. 194, 51-56.
  • Seeram, S.S., Hiraga, K. & Oda, K. (1997) Peptide bond and temporary inhibition of Streptomyces metalloproteinase inhibitor. J. Biochem. (To­kyo) 122, 788-794.
  • Sharp, A.M., Stein, P.E., Pannu, N.S., Carrell, R.W., Berkenpas, M.B., Ginsburg, D., Lawren­ce, D.A. & Read, R.J. (1999) The active confor­mation of plasminogen activator inhibitor 1, a target for drugs to control fibrinolysis and cell adhesion. Stricture 7, 111-118.
  • Shaw, G.L., Davis, B., Keeler, J. & Fersht, A.R. (1995) Backbone dynamics of chymotrypsin inhibitor 2: Effect of breaking the active site bond and its implications for the mechanism of inhibition of serine proteases. Biochemistry 34, 2225-2233.
  • Shin, D.H., Song, H.K., Seong, I.S., Lee, C.S., Chung, C.H. & Suh, S.W. (1996) Crystal struc­ture analyses of uncomplexed ecotin in two crystal forms: Implications for its function and stability. Protein Sci. 5, 2236-2247.
  • Shore, J.D., Day, D.E., Francis-Chmura, A.M., Verhamme, I., Kvasman, J., Lawrence, D.A. & Ginsburg, D. (1995) A fluorescent probe of plasminogen activator inhibitor-1. Evidence for reactive center loop insertion and its role in the inhibitory mechanism. J. Biol Chem. 270, 5395-5398.
  • Siekmann, J., Wenzel, H.R., Matuszak, E., von Goldammer, E. & Tschesche, H. (1988) The pH dependence of the equilibrium constant K^a for the hydrolysis of the Lys -Ala reac­tive-site peptide bond in bovine pancreatic trypsin inhibitor (aprotinin). J. Prot Chem. 7, 633-640.
  • Skinner, R., Abrahams, J.-P., Whisstock, J.C., Lesk, A.M., Carrell, R.W. & Wardell, M.R. (1997) The 2.6 A structure of antithrombin in­dicates a conformational change at the hepa­rin binding site. J. MoL Biol. 266, 601-609.
  • Skinner, R., Chang, W.S.W., Jin, L., Pei, X., Hun­tington, J.A., Abrahams, J.P., Carrell, R.W. & Lomas, D.A. (1998) Implications for function and therapy of a 2.9 A structure of binary- complexed antithrombin. J. MoL BioL 283, 9-14.
  • Song, H.K. & Suh, S.W. (1998) Kunitz-type soy­bean trypsin inhibitor revisited: Refined structure of its complex with porcine trypsin reveals an insight into the interaction between a homologous inhibitor from Erythrina caffra and tissue-type plasminogen activator. J. MoL BioL 275, 347-363.
  • Stein, P.E., Tewkesbury, C. & Carrell, R.W. (1989) Ovalbumin and angiotensinogen lack serpin S-R conformational change. Biochem. J. 262, 103-107.
  • Stein, P., Leslie, A.G.W., Finch, J.T., Turnell, W.G., McLaughlin, P.J. & Carrell, R.W. (1990) Crystal structure of ovalbumin as a model for the reactive center of serpins. Nature 347, 99-102.
  • Stein, P., Leslie, A.G.W., Finch, J.T. & Carrell, R.W. (1991) Crystal structure of uncleaved ovalbumin at 1.95 A resolution. J. MoL BioL 221, 941-959.
  • Stein, P.E. & Carrell, R.W. (1995) What do dys­functional serpins tell us about molecular mo­bility and disease? Nature Struct BioL 2, 96-113.
  • Stone, S.R., Whisstock, J.C., Bottomely, S.P. & Hopkins, P.C.R. (1997) Serpins. A mechanistic class of their own. Adv. Exp. Med. BioL 425, 5-15.
  • Strobl, S., Miihlhahn, P., Bernstein, R., Wiltscheck, R., Maskos, K., Wunderlich, M., Huber, R., Glockshuber, R. & Holak, T.A. (1995) Determination of the three-dimen­sional structure of the Afunctional a-amylase/ trypsin inhibitor from ragi seeds by NMR spectroscopy. Biochemistry 34, 8281-8293.
  • Strobl, S., Maskos, K., Wiegand, G., Huber, R., Gomis-Riith, F.X. & Glockshuber, R. (1998) A novel strategy for inhibition of a-amylases: Yellow meal worm a-amylase in complex with the ragi bifunctional inhibitor at 2.5 A resolu­tion. Structure 6, 911-921.
  • Stubbs, M.T. & Bode, W. (1995) The clot thickens: Clues provided by thrombin structure. Trends Biochem. Sci. 20, 23-28.
  • Stubbs, M.T., Morenweiser, R., Stiirzebecher, J., Bauer, M., Bode, W., Huber, R., Piechottka, G. P., Matschiner, G., Sommerhoff, C.P., Fritz, H. & Auerswald, E.A. (1997) The three
  • Suzuki, A., Yamane, T., Ashida, T., Norioka, S., Hara, S. & Ikenaka, T. (1993) Crystallographic refinement of Bowman-Birk type proteases in­hibitor A-II from peanut (Arackis hypogaea) at 2.3 A resolution. J. Mol Biol. 234, 722-734.
  • Szyperski, T., Giintert, P., Stone, S.R. & Wuthrich, K. (1992a) Nuclear magnetic reso­nance solution structure of hirudin(l-51) and comparison with corresponding three-dimensional structures determined us­ing the complete 65-residue hirudin polypeptide chain. J. Mol. Biol. 228, 1193-1205.
  • Szyperski, T., Giintert, P., Stone, S.R., Tulinsky, A., Bode, W., Huber, R. & Wuthrich, K. (1992b) Impact of protein-protein contacts on the conformation of thrombin-bound hirudin studied by comparison with the nuclear mag­netic resonance solution structure of hirudin (1-51). J. Mol Biol 228, 1206-1211.
  • Takeuchi, Y., Satow, Y., Nakamura, K.T. & Mitsui, Y. (1991) Refined crystal structure of the com plex of subtilisin BPN' and Streptomyces subtilisin inhibitor at 1.8 A resolution. J. Mol Biol 221, 309-325.
  • Takeuchi, Y., Nonaka, T., Nakamura, K.T., Kojima, S., Miura, K.-I. & Mitsui, Y. (1992) Crystal structure of an engineered subtilisin inhibitor complexed with bovine trypsin. Proc. Natl Acad. Sci U.S.A. 89, 4407-4411.
  • Tamura, A., Kanaori, K., Kojima, S., Kumagai, I., Miura, K. & Akasaka, K. (1991) Mechanism of temporary inhibition in Streptomyces subtilisin inhibitor induced by an amino acid substitution, tryptophan 86 replaced by histidine. Biochemistry 30, 5275-5286.
  • Travis, J. & Sdvesen, G.S. (1983) Human plasma proteinase inhibitors. Anna. Rev. Biochem. 52, 655-709.
  • Tsunemi, M., Matsuura, Y., Sakakibara, S. & Katsube, Y. (1996) Crystal structure of an elastase-specific inhibitor elafin complexed with porcine pancreatic elastase determined at 1.9 A resolution. Biochemistry 35, 11570- 11576.
  • Tsunogae, Y., Tanaka, I., Yamane, T., Kikkawa, J., Achida, J.T., Ishikawa, C., Watanabe, K., Nakamura, S. & Takahashi, K. (1986) Struc­ture of the trypsin-binding domain of Bow­man-Birk type protease inhibitor and its inter­action with trypsin. J. Biochem (Tokyo) 100, 1637-1G4G.
  • Tucker, H.M., Mottonen, J., Goldsmith, E.J. & Gerard, R.D. (1995) Engineering of plasmino­gen activator inhibitor-1 to reduce the rate of latency transition. Nature Struct Biol 2, 442-445.
  • Uson, I., Sheldrick, G.M., de La Fortelle, E., Bricogne, G., Di Marco, S., Priestle, J.P. & Grutter, M.G. (1999) The 1.2 A crystal struc­ture of hirustasin reveals the intrinsic flexibil­ity of a family of highly disulphide-bridged serine proteases. Structure 7, 55-63.
  • Vallee, F., Kadziola, A., Bourne, Y., Juy, M., Rodenburg, K.W., Svensson, B. & Haser, R. (1998) Barley a-amylase bound to its endoge­nous protein inhibitor BASI: Crystal structure of the complex at 1.9 A resolution. Structure 6, 649-659.
  • van de Locht, A., Lamba, D., Bauer, M., Huber, R., Friedrich, T., Kroger, B., Hoffken, W. & Bode, W. (1995) Two heads are better than one: Crys­tal structure of the insect derived double do­main Kazal inhibitor rhodniin in complex with thrombin. EMBO J. 14, 5149-5157.
  • van de Locht, A., Stubbs, M.T., Bode, W., Friedrich, T., Bollschweiler, C., Hoffken, W. & Huber, R. (1996) The ornithodorin-thrombin crystal structure, a key to the TAP enigma? EMBO J. 22, 6011-6017.
  • van de Locht, A., Bode, W., Huber, R., Le Bonniec, B.F., Stone, S.R., Esmon, C.T. & Stubbs, M.T. (1997) The thrombin E192Q-BPTI complex re­veals gross structural rearrangements for the interaction with antithrombin and thrombo­modulin. EMBO J. 16, 2977-2984.
  • Walkenhorst, W.F.. Krezel. A.M.. Rhyu. G.I. & Markley, J.L. (1994) Solution structure of re­active site hydrolyzed turkey ovomucoid third domain by nuclear magnetic resonance and distance geometry methods. J. Mol Biol 242, 215-230.
  • Wardell, M.R., Abrahams, J.P., Bruce, D., Skin­ner, R. & Leslie, A.G. (1993) Crystallization and preliminary X-ray diffraction analysis of two conformations of intact human anti- thrombin. J. MoL BioL 234, 1253-1258.
  • Waxman, L., Smith, D.E., Arcuri, K.E. & Vlasuk, G.P. (1990) Tick anticoagulant peptide (tap) is a novel inhibitor of blood coagulation factor Xa. Science 248, 593-596.
  • Wei, A., Rubin, H., Cooperman, B.S. & Christ- ianson, D.W. (1994) Crystal structure of an uncleaved serpin reveals the conformation of an inhibitory reactive loop. Nature Struct Biol. 1, 251-257.
  • Wei, A., Alexander, R.S., Duke, J., Ross, H., Rosenfeld, S.A. & Chang, C.H. (1998) Unex­pected binding mode of tick anticoagulant pep­tide complexed to bovine factor Xa. J. MoL BioL 283, 147-154.
  • Wells, J.A. (1990) Additivity of mutational effects in proteins. Biochemistry 29, 8509-8517.
  • Werner, M.H. & Wemmer, D.E. (1992) Three-di­mensional structure of soybean trypsin/chy- motrypsin Bowman-Birk inhibitor in solution. Biochemistry 31, 999-1010.
  • Whisstock, J., Skinner, R. & Lesk, A.M. (1998) An atlas of serpin conformations. Trends Bio- chem. Sci. 23, 63-67.
  • Wlodawer, A., Walter, J., Huber, R. & Sjolin, L. (1984) Structure of bovine pancreatic trypsin inhibitor. Results of joint neutron and X-ray refinement of crystal form II. J. MoL BioL 180, 301-329.
  • Wright, H.T. & Scarsdale, J.N. (1995) Structural basis for serpin inhibitor activity. Proteins: Struct Funct Genet. 22, 210-225.
  • Wright, H.T., Qian, H.Z. & Huber, R. (1990) Crys­tal structure of plakalbumin, a proteolytically nicked form of ovalbumin. J. MoL BioL 213, 513-528.
  • Xu, Y., Carr, P.D., Guss, J.M. & Ollis, D.L. (1998) The crystal structure of bikunin from the inter «-inhibitor complex: A serine protease inhibi­tor with two Kunitz domains. J. MoL BioL 276, 955-966.
  • Yang, S.Q., Wang, C.-I., Gillmor, S.A., Fletterick, R.J. & Craik, C.S. (1998) Ecotin: A serine pro­tease inhibitor with two distinct and interact ing binding sites. J. MoL BioL 279,945-957.
  • Yu, M.-H., Weissman, J.S. & Kim, P.S. (1995) Con­tribution of individual side-chains to the stabil­ity of BPTI examined by alanine-scanning mu­tagenesis. J. MoL BioL 249, 388-397.
  • Zbyryt, T. & Otlewski, J. (1991) Interaction be­tween squash inhibitors and bovine trypsi- nogen. Biol. Chem. Hoppe-Seyler 372, 255- 262.
  • Zemke, K.J., Miiller-Farhnow, A., Jany, K.-D., Pal, G.P. & Saenger, W. (1991) The three-dimen­sional structure of the bifunctional proteinase K/a-amylase inhibitor from wheat (PKI3) at 2.5 A resolution. FEBS Lett 279, 240-242.
  • Zhang, E., St Charles, R. & Tulinsky, A. (1999) Structure of extracellular tissue factor complexed with factor VI Ia inhibited with a BPTI mutant. J. MoL BioL 285, 2089-2104.
  • Zweckstetter, M., Czisch, M., Mayer, U., Chu, M.-L., Zinth, W., Timpl, R. & Holak, T.A. (1995) Structure and multiple conformations of the Kunitz-type domain from human type VI collagen a3(VI) chain in solution. Structure 4, 195-209.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-8ae80520-d04d-4a70-a171-9ff5ac834fb5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.