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Simulation study on the application of Gibbs sampling 
for major gene detection in a population of laying hens 
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Abstract. A method for the detection of segregating major genes based on the ana- 

lysis of estimated marginal posterior major gene variance density was examined. 

The properties of the method were investigated using data sets simulated for a real 

population of laying hens consisting of eleven generations. Marginal posterior 

densities of model parameters were estimated by the Gibbs sampling approach 

proposed by JANss et al. (1995). With the data of about 4000 observations it was 

possible to detect a major gene responsible for one third of the genetic variance and 

one tenth of the phenotypic variance, irrespectively of the degree of dominance at 

the major locus. The inference based on the posterior marginal major gene variance 

can be sensitive to skewness of the data. It was shown that skewness of 0.2 can lead 

to a false detection of a major gene. The method is robust against a non-genetic 

mixture of normal distributions. 
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Introduction 

Complex segregation analysis (ELSTON, STEWART 1971) is considered to 

be the most powerful method for the detection of a major gene. The inference 

is based on the comparison of the likelihood of the data under different 

inheritance models. Under mixed major gene-polygenic model, a trait distribu- 

tion is described as a mixture of normals with the weights specified according 

to the mode of inheritance. The use of this method is limited by computational 

difficulties in likelihood calculations. Complex genetic models and large pedi- 
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grees, which are usually available in animal populations, require some approxi- 
mation. 

One of the possible numerical tools is Gibbs sampling, which has been 
adapted to segregation analysis for human pedigrees (GUO, THOMPSON 1994). 
JANSS et al. (1995) presented a sampling scheme suitable for large animal 
pedigrees and based his inferences on posterior density estimates. The existence 
of a major gene is assumed from the shape of the estimated marginal posterior 

density of the major gene variance. 

Segregation analysis relies strongly on the adequacy of the model assumed, 

and in particular, on the normality of the underlying distributions. Further, it 

has been shown that skewed distributed data can lead to false major gene 

detection (MACLEAN et al. 1975). On the other hand, transformation of the data 

considerably reduces the power of the method and raises the issue of interpre- 

tation (DEMENAIS et al. 1986). 

Egg production traits show markedly nonnormal distributions (IBE, HILL 

1988, BESBES et al. 1993). Hence, the genetic parameter estimates may be 

biased and the detection of major genes for these traits may be difficult. 

The objective of this study was to examine the properties of the inference 

from mixed inheritance models based on marginal model parameter densities 

estimated by Gibbs sampling. The properties of the method for the detection 

of major gene of a different mode of inheritance were studied. Robustness of 

the method under a skewed distribution of polygenic trait and in the presence 

of a non-genetic mixture of normal distributions was also investigated. 

Material and methods 

The following statistical model was used for segregation analysis: 

y=[u+Zu+ZWm+e 

where y is a vector of observations, i is an overall mean, u and Wm are vectors 

of polygenic and single gene effects, respectively; e is a vector of random 

errors and Z is an incidence matrix relating the genetic effects to observations. 

Vector m contains unknown additive (a) and dominance (d) genotypic values 

related to three genotypes, m” = fa, d, —a). W is unknown three-columns 

matrix which represents genotype configuration. Three columns correspond to 

three possible genotypes at autosomal biallelic major locus and each row 

contains two O and 1 to indicate the genotype of an individual. The prior 

distribution for was uniform, defined on <—*, =>, Distributional assumptions
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for u were specified as u — N(0, Ao.), where A is the numerator relationship 

matrix and o, is a polygenic variance with a uniform prior distribution on 

<0, e>. Genotype probabilities for each founder were equal to Hardy-Weinberg 

frequencies. For each nonfounder, genotype probabilities were conditioned on 

the parental genotypes, assuming Mendelian segregation of alleles. Prior dis- 

tributions for the frequency of positive allele (p), additive and dominance 

genotypic values were uniform and defined on [0, 1], [0, »> and <=», =>, 

respectively. Distributional assumptions for e were specified as e ~ №0, 10), 

where с’ is a residual variance component with uniform prior distribution on 

<Q, >. The complete set of parameters for the specified model was 0 = (it, 

u, с”, W, p, a, d, с”). The variance explained by a single gene is defined as 

2 2 2 
Om = 2p(I — p)(a + d(l — 2p)) + (2рИ - р)а). 

Segregation analysis was based on estimated marginal densities of parame- 

ters p, a, d, о, с: and 02. The densities were estimated from one thousand 

virtual independent joint samples of the parameters, generated via Gibbs samp- 

ling. The method iteratively generates pseudo random values of all model 

parameters according to their full conditional posterior distributions. The values 

successively sampled from the full conditional distributions (Gibbs chain) 

converge to drawings from the marginal distributions. The virtual independent 

samples were obtained by collecting values from every 5000 iterations. To fa- 

cilitate the convergence of the Gibbs sampler, the genotype of each sire was 

sampled in block with the genotypes of its final progeny. Similar blocked 

sampling was used for poligenic values. Exact details on the sampling scheme 

can be found in JANSS et al. (1995). Additional improvement in convergence 

was achieved using relaxation of allele transmission probabilities to slightly 

non-Mendelian transmission (SHPEHAN, THOMAS 1993). To provide a correct 

set of samples for the inference on a strict Mendelian model, the probability 

for non-Mendelian transmission was gradually reduced from 0.05 to 0 before 

taking each next sample. The samples were generated in five Gibbs chains, 

obtaining 200 independent Gibbs samples per chain. Convergence of the Gibbs 

sampler was judged by testing for a significant chain effect with respect to 

parameters: p, a, d, с’, с’ and с. using the standard ANOVA F-test. Densities 

of parameters were estimated using average shifted histogram (SCOTT 1992), 

and summary statistics of the marginal posterior distributions were computed 

by numerical integration using the estimated densities. For major gene variance,
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the ratios of marginal density at global mode for Oo > 0 and at 2 = 0 (odds 
ratios) were computed. The 95% highest posterior density regions were also 
estimated for this parameter. Analyses were carried out using Gibbon program 
(SZYDLOWSKI 1998). 

All analyses were performed for simulated data sets. Trait records were 
formed for the real pedigree of a Leghorn strain. Hypothetical traits were 
observed only in females. The population comprised eleven generations and 
consisted of 338 base individuals, 1205 progeny which were parents them- 
selves, and 3079 final progeny. Using this pedigree structure, different pheno- 
typic data sets were simulated. Traits were generated according to a mixed 
and polygenic model of inheritance. In each case, the ratio of polygenic variance 

(02) plus major gene variance (6) to the total variance was 0.3. 

The effectiveness of the method for the detection of major genes of different 
inheritance modes was investigated using three data sets generated under 
a mixed major gene-polygenic model. The major locus was biallelic with 
the frequency of the positive allele (p) equal 0.3. The data sets differed in ad- 
ditive (a) and dominance (d) genotypic values used in the simulations. The three 
data sets were generated under no dominance (d = 0), complete dominance 

(d = a) and overdominace (d = 1.5a). Expected value for O), was /.0. In each 

case, a major gene was responsible for a third part of the total genetic variance 

and a tenth part of the phenotypic variance. 

Four different data sets were generated to examine the effect of the departure 
from normality on major gene detection. First, a single normally distributed 
data set was created assuming a pure polygenic model. For this data set, 
the coefficient of skewness (s) was close to zero. Based on these values, skewed 

distributed records were generated by transforming each value to a new value 
using the inverse of the Box-Cox transformation (see, e.g., UIMARI et al. 1996). 
The transformation parameters were chosen empirically to obtain the desired 
coefficients of skewness. Three differently skewed data sets were created with 
the coefficients of skewness close to 0.1, 0.2 and 0.3, respectively. 

Three data sets were generated to investigate the reaction of the method to 
the presence of a non-genetic mixture of normal distributions. The mixture of 

three normals was created by appending a random effect of three levels with 
probabilities 0.25, 0.5 and 0.25, to the previously generated values under a pure 
polygenic model of inheritance. For the three data sets, the additional non- 
genetic effect was responsible for k = 4, k = 4 and k = 4 of the non-genetic 
variance, and !40, %0 and 340 of the total variance, respectively. The effect
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corresponded to the codominant model with two alleles of equal frequencies, 

but was nonheritable. 

Results 

Tests for the convergence of the Gibbs sampler showed no significant 

(P> 0.05) differences between replicated chains for the considered parameters 

and demonstrated convergence of sampling procedure. The results of all per- 

formed analyses are given in Table 1. Means, modes and standard deviations 

of estimated densities are given relative to their true parameter values used in 

the simulations. For data sets generated under polygenic model, the estimates 

of p, a and d were irrelevant and are not shown. As already mentioned, 

the posterior marginal major gene density was the main criterion to assume 

a mixed model of inheritance. The statistics which summarise the estimated 

major gene densities are shown in Figure 1. 

The skewness coefficients for the data sets generated under mixed inherit- 

ance models were 0.1, 0.12, and 0.16 for additive, complete dominance and 

overdominance models, respectively. The odds ratios increased slightly with 

the degree of dominance. For additive and complete dominance model, the 95% 

highest posterior density regions contained null value of the major gene vari- 

ance, and only in the case of overdominace the region did not overlap zero. 

In each case, the mode and mean of marginal distributions of the major gene 

were close to true value (0. = 1.0). However, data generated under compleie 

dominance resulted in the most accurate estimates. 

For symmetrically distributed trait records generated under a pure polygenic 

model the estimated major gene density clearly indicated the absence of a major 

gene. The same was observed with skewness of 0.1. However, larger skewness 

led to odds ratios greater than one. It was shown that skewness equal to 0.2 

and higher gave the density of major gene variance with the mode greater than 

zero. 

The analyses of the data generated under a non-genetic mixture of distribu-_ 

tions yielded the major gene variance densities with the modes at zero, irre- 

spective of the magnitude of variance attributed to the non-genetic factor. 

The factor increased the estimates of residual variance, but not the major gene 

and polygenic variance. The increase was proportional to the part of total 

variability, for which the non-genetic factor was responsible. The results 

showed that the examined method discriminates a genetic mixture of distribu- 

tions from that of non-genetic origin.
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Table 1. Relative means, modes and standard deviations of posterior marginal model 
parameter densities obtained for data sets generated under mixed major gene—polygenic 
inheritance (model for additive (d= 0), complete dominance (d = a) and overdominance 
(d = 1.5a) gene action) and under pure polygenic model with different coefficients of 
skewness (Ss) in trait distribution and different parts (k) of error variance explained by 
unidentified non-genetic effect. All statistics are shown relative to true parameter values 
used in simulations. 
  

  

  

  
          

Parameter 

Model Statistics 

p a d On 02 

Mixed 

d=0 mean 0.93 1.11 1.06 1.12 

mode 0.89 1.08 0.98 1.07 

s.d. 0.15 0.04 0.24 0.09 

d=a mean 0.94 1.04 0.91 1.02 1.13 

mode 0.91 1.06 0.95 0.99 1.06 

s.d. 0.14 0.04 0.06 0.21 0.10 

d=1.5a mean 0.95 1.08 0.93 1.05 1.14 

mode 0.97 1.10 0.94 1.02 1.13 

s.d. 0.15 0.05 0.07 0.23 0.09 

Polygenic 

s=0.0 mean 0.85 1.09 

mode 0.95 1.02 

s.d. 0.24 0.12 

s=0.1 mean 0.94 1.10 

mode 0.87 1.03 

s.d. 0.15 0.11 

s=0.2 mean 0.88 1.09 
mode 0.93 1.01 

s.d. 0.23 0.14 

0.81 1.08 s=0.3 mean 

mode 0.97 1.06 

s.d. 0.22 0.14 

0.91 1.12 k= mean 

” mode 0.97 1.08 

s.d 0.20 0.13 

0.94 1.35 =3 

к mode 091 1.34 
sd. 0.22 0.14 

0.97 1.61 = 5 

<=” mode 1.20 1.57 

sd 0.24 0.17             
  

[327]
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Discussion 

A variety of statistical approaches to major gene detection have been 

proposed (see, e.g., LE ROY, ELSEN 1992). Simple indicators of major gene 

segregations and computationally inexpensive methods based on mixture mod- 

els allow data permutation to determine appropriate threshold values for test 

statistics (CHURCHILL, DOERGE 1994). However, these methods ignore many 

relationships among individuals and their application is limited to simple 

models. Gibbs sampling, in combination with the Bayesian approach, provides 

a very flexible tool. It makes the use of complex and looped pedigrees possible 

and gives the opportunity to fit many random genetic and non-genetic effects. 

These advantages are accompanied by large computational requirements and 

expensive permutation tests are not available. 

To reduce the error of falsely accepting presence of a single gene, JANSS 

et al. (1995) proposed to consider oż, to be significant only when the odds 

ratio exceeds 20. This value corresponds to a 5% significance level and prevents 

accepting a major gene unless abundant evidence is available. However, 

this criterion may be quite stringent. Alternatively, it was suggested to assume 

a mixed mode of inheritance as soon as the odds ratio exceeds one. As it has 

been shown in this paper on the sample size of about 4000 observations one 

can not expect odds ratio to exceed 20 even in the case of quite substantial 

magnitude of major gene variance. For such sample size, the effectiveness of 

the method is limited to major genes of very large effects. Hence, it seems 

better to perform a single analysis on a simulated trait for the population under 

consideration to get some idea about expected results of analysis for a trait 

affected by a major gene. The simulated single gene effect should be the smal- 

lest effect which is still of interest, e.g., required by marker free methods to 

estimate the genotype of an individual at major locus with a desired precision. 

The method and type of inference applied in this paper appeared to be 

sensitive to skewness in the sense that skewed data lead to a positive mode of 

the major gene variance. Fora classical segregation analysis based on likelihood 

ratio, it was demonstrated that skewness larger than 0.2 may lead to a false 

detection of major gene (DEMANAIS et al. 1986). As it was already mentioned, 

the skewed distribution is expected for egg production traits even when no 

major gene is segregating. Removing all skewness with the use of the Box-Cox 

transformation can lead to a considerable reduction in power (DEMENAIS et al. 

1986). When dealing with a maximum likelihood approach, the transformation 

parameter can be estimated simultaneously with other parameters (MACLEAN 

et al. 1984). However, it was observed that it can lead to a tremendous change
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in likelihood surface and in parameter estimates (UIMARI et al. 1997). Some 
skewness can be explained by the so-called scale effect. In this case, the ana- 
lysis with different variances within genotypes instead of the common variance 
is a possible option. 

When analysing skewed data, one can expect odds ratio to be greater than 
one. This may be caused by a major gene, a noninherited effect or both. 
To determine whether a major gene really exists, it can be useful to perform 
a segregation analysis on permuted data. A permuted data set is created from 
original data by random shuffling trait observations (with categorical variables 
and covariables for non-genetic effects) over individuals. The degrees of 
skewness are equal in original and permuted data sets. However, when ana- 
lysing permuted data, significant results stem totally from nongenetic factors. 
As was shown in this paper for traits with approximately equal skewness, data 
skewed by a major gene tend to provide a larger odds ratio than a data set 

skewed by nongenetic effects. So, if a major gene really segregates, the odds 

ratio estimated from permuted data is expected to be lower than the odds ratio 

estimated from the original data set. If no major gene is segregating, there 

should be no substantial difference between these two estimates. Some caution 

is needed in density estimation from permuted data. The permutation of the data 

makes both the major gene variance and the polygenic variance not estimable. 

As the marginal posterior distribution of 0”. takes into account uncertainty in 

all other parameters in the model, the shape of density of a major gene variance 

can also be influenced by an increased uncertainty of polygenic variance. 

To reduce this effect, one can assume no polygenic background and compare 

the shapes of major gene densities estimated from a monogenic model or use 

the original observations for sampling polygenic values. 

The results suggest that the method considered here is quite robust against 

a non-genetic mixture of normal distributions. However, sensitivity for a non- 

genetic mixture of distributions can depend on the mixing weights used. Such 

dependence was found by UIMARI et al. (1996) for simpler methods when two 

mixing proportions differed substantially. Hence, the robustness is limited to 

the cases, in which non-genetic mixture is not the source of skewness. 

In conclusion, the simulated studies discussed in this paper showed that 

with a data set of about four thousand observations it is possible to detect 

a major gene responsible for one third of the genetic variance and one tenth 

of the total variance. However, skewness of the data can lead to a false major 

gene detection. To reduce the possibility of falsely accepting a mixed mode 

of inheritance, additional analysis based on a permuted data set is required.
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