PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1998 | 45 | 3 |

Tytuł artykułu

Phage display of proteins

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In recent years the phage display approach has become an increasingly popular method in protein research. This method enables the presentation of large peptide and protein libraries on the surface of phage particles from which molecules of desired functional property(ies) can be rapidly selected. The great advantage of this method is a direct linkage between an observed phenotype and encapsulated genotype, which allows fast determination of selected sequences. The phage display approach is a powerful tool in generating highly potent biomolecules, including: search for specific antibodies, determining enzyme specificity, exploring protein-protein and protein-DNA interactions, minimizing proteins, introducing new functions into different protein scaffolds, and searching sequence space of protein folding. In this article many examples are given to illustrate that this technique can be used in different fields of protein science. The phage display has a potential of the natural evolution and its possibilities are far beyond rational prediction. Assuming that we can design the selection agents and conditions we should be able to engineer any desired protein function or feature.

Wydawca

-

Rocznik

Tom

45

Numer

3

Opis fizyczny

p.705-720,fig.

Twórcy

  • University of Wroclaw, Wroclaw, Poland
autor
autor
autor

Bibliografia

  • 1. Kunkel. T.A., Roberts, J.D. & Zakour, R.A. (1987) Rapid and efficient site-specific muta­genesis without phenotypic selection. Methods Enzymol. 154, 367-382.
  • 2. Shaw, W.V. (1987) Protein engineering. The design, synthesis and characterization of facti­tious proteins. Biochem. J. 246, 1-17.
  • 3. Wells, J.A. (1990) Additivity of mutational ef­fects in proteins. Biochemistry 29,8509-8517.
  • 4. Ellman, J., Stoddard, B. & Wells, J. (1997) Combinatorial thinking in chemistry and biol­ogy. Proc. Natl. Acad. Sci. U.S.A. 94, 2779- 2782.
  • 5. Smith, G.P. (1985) Filamentous fusion phage: Novel expression vectors that display cloned antigens on the surface of the virion. Science 228, 1316-1317.
  • 6. Smith, G.P. (1991) Surface presentation of protein epitopes using bacteriophage expres­sion systems. Curr. Opin. Biotechnol. 2, 668- 673.
  • 7. Zhao, H. & Arnold, F.H. (1997) Combinatorial protein design: Strategies for screening pro­tein libraries. Curr. Opin. Struct. Biol. 7,480- 485.
  • 8. Stemmer, W.P.C. (1995) Searching sequence space. Biotechnology 13, 549-553.
  • 9. Riddle, D.S., Santiago. J.V., Bray-Hall, S.T., Doshi, N., Grantcharova, V.P., Yi, Q. & Baker, D. (1997) Functional rapidly folding proteins from simplified amino acid sequence. Nature Struct. Biol. 4, 805-809.
  • 10. Li, B., Tom. J.Y.K., Oare, D., Yen, R., Fair- brother, W.J., Wells, J.A. & Cunningham, B.C. (1995) Minimization of a polypeptide hor­mone. Science 270, 1657-1660.
  • 11. Braisted, A.C. & Wells, J.A. (1996) Minimiz­ing a binding domain from protein A. Proc. Natl Acad. Sci. U.S.A. 93, 5688-5692.
  • 12.0'Neil, K.T., Hoess, R.H., Raleigh, D.P. & de- Grado, W.F. (1995) Thermodynamic genetics of the folding of the B1 immunoglobulin- binding domain from streptococcal protein G. Proteins: Struct. Fund. Genet. 21, 11-21.
  • 13. Jucovic, M. & Hartley, R.W. (1996) Protein- protein interaction: A genetic selection for compensating mutations at the barnase- brarstar interface. Proc. NatL Acad. Sci. U.S.A. 93, 2343-2347.
  • 14. Pasqualini, R. & Ruoslahti, E. (1996) Organ targeting in vivo using phage display peptide li­banes. Nature 380. 364-366.
  • 15. Rader, C. & Barbas, C.F. (1997) Phage display of combinatorial antibody libraries. Curr. Opin. Struct. Biol 8. 503-508.Hoogenboom, H.R. (1997) Designing and opti­mizing library selection strategies for generate ing high-affinity anibodies. Trends Biotechnol. 15, 62-70.
  • 16. Nygren, P.-A. & Uhlén, M. (1997) Scaffolds for engineering novel binding sites in proteins. Curr. Opin. Struct. Biol 7, 463-469.
  • 18.0'Neil, K.T. & Hoess, R.H. (1995) Phage dis­play: Protein engineering by directed evolu­tion. Curr. Opin. Struct BioL 5, 443-449.
  • 19. Katz, B.A. (1997) Structural and mechanistic determinants of affinity and specificity of ligands discovered or engineered by phage dis­play. Annu. Rev. Biophys. Biomol. Struct. 26, 27-45.
  • 20. Lowman, H.3. (1997) Bacteriophage display and discovery of peptide leads for drug devel­opment. Annu. Rev. Biophys. Biomol Struct. 26. 401-424.
  • 21. Barbas, C.F.. Ill (1993) Recent advances in phage display. Curr. Opin. Biotechnol 4, 526- 530.
  • 22. Allen, J.B., Walberg, M.W., Edwards, M.C. & Elledge, S.J. (1995) Finding prospective part­ners in the library: Two-hybrid system and phage display find a match. Trends Biochem. Sci. 20, 511-516.
  • 23. Nedvidek, M.N. & Hecht, M.H. (1997) Mini­mized protein structures: A Little goes a long way. Proc. Natl. Acad. Sci. U.S.A. 94, 10010- 10011.
  • 24. Córtese, R., Monaci, P., Luzzago, A., Santini, C., Bartoli, F., Córtese, I., Fortugno, P., Gal- fré, G., Nicosia, A. & Felici, F. (1996) Selection of biologically active peptides by phage display of random peptide libraries. Curr. Opin. Struct. Biol. 7, 616-621.
  • 25. Dunn, I.S. (1996) Phage display of proteins. Curr. Opin. Struct. Biol. 7. 547-553.
  • 26. Cunningham, B.C. & Wells, J.A. (1997) Mini- mixed proteins. Curr. Opin. Struct. Biol 7, 457-462.
  • 27. Kay, B.K., Winter, J. & McCafferty, J. (1996) Phage Display of Peptides and Proteins, Labora­tory Manual. Academic Press, San Diego.
  • 28. Jespers, L.S., Messens, J.H., De Keyser, A., Eeckhout, D., Van Den Brande, I., Ganse- mans, Y.G., Lauwereys, M.J., Vlasuk, G.P. & Stanssens, P.E. (1995) Surface expression and ligand-based selection of cDNAs fused to fila­mentous phage gene VI. Biotechnology 13, 378- 382.
  • 29. Mikawa, Y.Gi., Maruyama, I.N. & Brenner, S. (1996) Surface display of proteins on bacterio­phage A heads. J. Mol Biol 262, 21-30.
  • 30. Maruyama, I.N. et al (1997) Efficient epitope mapping by bacteriophage A surface display. Nature Biotechnology 15, 74-78.
  • 31. Sternberg, N. & Hoess, R.H. (1995) Display of peptides and proteins on the surface of bacte­riophage X. Proc. Natl Acad. Sci. U.S.A. 92. 1609-1613.
  • 32. Feller. W. (1966) Wstęp do Rachunku Prawdo­podobieństwa) pp. 92-95, PWN, Warszawa (in Polish).
  • 33. Arkin, A.P. & Youvan, D.C. (1992) Optimizing nucleotide mixtures to encode specific subsets of amino acids for semi-random mutagenesis. Biotechnology 10, 297-300.
  • 34. Barbas, C.F., III & Lerner, R.A. (1991) Combi­natorial immunoglobulin libraries on the sur­face of phage (Phabs): Rapid selection of antigen-specific Fabs. Methods Companion Methods Enzymol 4, 119-124.
  • 35. Barbas, C.F. & Burton, D.R. (1993) Manual for 1993 Cold Spring Harbor Laboratory Course on monoclonal antibodies from combinatorial li­braries. Cold Spring Harbor Laboratory.
  • 36. Smith, G.P. & Scott, J.K. (1993) Libraries of peptides and protein displayed on filamentous phage. Methods Enzymol 217, 228-257.
  • 37. Barbas, C.F., III & Burton, D.R. (1996) Selec­tion and evolution of high-affinity human anti­viral antibodies. Trends Biotech, 14,230-234.
  • 38. Baca, M., Presta, L.G., O'Connor, S.J. & Wells, J.A. (1997) Antibody humanization us­ing monovalent phage display. J. Biol Chem. 272. 10678-10684.
  • 39. Yang, W.P., Green, K., Pinz-Sweeney, S., Brio- nes, A.T., Burton, D.R. & Barbas, C.F. (1995) CDR walkir.g mutagenesis for the affinity maturation of a potent human anti-HIV-1 anti­body into the picomolar range. J. Mol Biol 254, 392-403.
  • 40.Steinberger, P., Kraft, D. & Valenta, R. (1996) Construction of a combinatorial IgE library from an allergic patient. J. Biol. Chem. 271, 10967-10972.
  • 41. Neri, D., Carnemolla, B., Nissim, A., Leprini, A., Querze, G., Balza, E., Pini, A., Tarli, L., Halin, C., Neri, P., Zardi, L. & Winter, G. (1997) Targeting by affinity-matured recombi­nant antibody fragments of an angiogenesis associated fibronectin isoform. Nature Bio­technology 15, 1271-1275.
  • 42. Kontermanr., R.E., Wing, M.G. & Winter, G. (1997) Complement recruitment using bispe- cific diabodies. Nature Biotechnology 15, 629-631.
  • 43. Lerner, R.A., Benkovic, S.J. & Schultz, P.G. (1991) At the crossroads of chemistry and im­munology: Catalytic antibodies. Science 252, 659-667.
  • 44. Baca, M., Scanlan, T.S., Stephenson, R.C. & Wells, J.A. (1997) Phage display of a catalytic antibody to optimize affinity for transition- state analog binding. Proc. Natl. Acad. ScL U.S.A. 94, 10063-10068.
  • 45. Bode, W. & Huber, R. (1992) Natural protein proteinases inhibitors and t.hpir interaction with proteinases. Eur. J. Biochem. 204, 433- 451.
  • 46.0tlewski, J. & Apostoluk, W. (1997) Structural and energetic aspects of protein-protein rec­ognition. ACxl Biochim. Polon. 44, 367-388.
  • 47. Roberts, B.L., Markland, W., Ley, A.C., Kent, R.B., White, D.W., Guterman, S.K. & Ladner, R.C. (1992) Directed evolution of a protein: Se­lection of potent neutrophil elastase inhibitors displayed on M13 fusion phages. Proc. Natl Acad. Sci. U.S.A. 89, 2429-2433.
  • 48. Roberts, B.L., Markland, W., Siranosian, K., Saxena, M J., Guterman, S.K. & Ladner, R.C. (1992) Protease inhibitor display M13 phage: Selection of high-neutrophil elastase inhibi­tors. Gene 121, 9-15.
  • 49. Dennis, M.S. & Lazarus, R.A. (1994) Kunitz domain inhibitors of tissue factor — factor Vila. I. Potent inhibitors selected from librar­ies by phage display. J. Biol. Chem. 35, 22129-22136.
  • 50. Dennis, M.S. & Lazarus, R.A. (1994) Kunitz domain inhibitors of tissue factor — factor Vila. II. Potent and specific inhibitors by com­petitive phage selection. J. Biol. Chem. 35, 22137-22144.
  • 51. Dennis, M.S., Herzka, A. & Lazarus, R.A. (1995) Potent and selective Kunitz domain in­hibitors of plasma kallikrein designed by phage display. J. Biol. Chem. 43, 25411- 25417.
  • 52. Markland, W., Ley, A.C. & Ladner, R.C. (1996) Iterative optimization of high affinity prote­ase inhibitors using phage display. 1. Plasmin. Biochemistry 35, 8045-8057.
  • 53. Markland, W., Ley, A.C. & Ladner, R.C. (1996) Iterative optimization of high affinity prote­ase inhibitors using phage display. 2. Plasma kallikrein and thrombin. Biochemistry 35, 8058-8067.
  • 54. Kossiakoff, A.A., Hynes, T. & de Vos, A. (1993) Molecular recognition in biological systems: From activation to inhibition. Biochem. Soc. Trans. 21, 614-618.
  • 55.Scheidig, A.J., Hynes, T.R., Pelletier, L.A., Wells. J.A. & Kossiakoff, A.A. (1997) Crystal structure of bovine chymotrypsin and trypsin complexed to the inhibitor domain of Alz­heimer's amyloid /?-protein precursor (APPI) and basic pancreatic trypsin inhibitor (BPT1): Engineering of inhibitors with altered speci­ficities. Protein ScL 6, 1806-1824.
  • 56. Lu, W., Apostol, I., Qasim, M.A., Warne, N., Wynn, R., Zhang, W.L., Anderson, S., Chiang, Y.W., Rothberg, I., Ryan, K. & Laskowski, M., Jr. (1997) Binding of amino acid side chains to Sj cavities of serine proteinases. J. Mol Biol. 266, 441-461.
  • 57. Otlewski, J., Apostoluk, W., Buczek, O.L., Cho- lawska, L., Grzesiak, A., Koscieiska, K., Krokoszyriska, I., Krowarsch, D., Stachowiak, D. & Dadlez, M. (1997) Structural and ener­getic aspects of protein inhibitor — serine pro­teinase recognition; in Polish-Japanese Semi­nar. Trends Protein Res. pp. 49-58.
  • 58. Matthews, D.J., Goodman, L.J., Gorman, C.M. & Wells, J.A. (1994) A survey of furin sub­strate specif.city using substrate phage dis­play. Protein Sci. 3, 1197-1205.
  • 59. Chang, T.K., Jackson, D.Y., Burnier, J.P. & Wells, J.A. (1994) Subtiligase. A tool for semi- synthesis of proteins. Proc. Natl. Acad. Sci. U.S.A. 91, 12544-12548.
  • 60. Ballinger, M.D., Tom, J. & Wells, J.A. (1995) Designing subtilisin BPN' to cleave substrates containing dibasic residues. Biochemistry 34, 13312-13319.
  • 61. Ding, L., Coombs, G.S., Strandberg, L., Navre, M., Corey. D.R. & Madison, E.L. (1995) Ori­gins of specificity of tissue-type plasminogen activator. Proc. Natl. Acad. Sci. U.S.A. 92, 7627-7631.
  • 62.Starovasnik, M.A., Braisted, A.C. & Wells, J. A. (1997) Structural mimicry of a native pro­tein by a minimized binding domain. Proc. Natl. Acad. Sci. U.S.A. 94, 10080-10085.
  • 63. Wrighton, N.C., Farrell, F.X., Chang, R., Kashyap, A.K., Barbone, F.P., Mulcahy, L.S., Johnson, D.L., Barrett, R.W., Jolliffe, L.K. & Dower, W.J. (1996) Small peptides as potent mimetics of their protein hormone erythro­poietin. Science 273, 458-463.
  • 64.Schumacher, T.N.M., Mayr, L.M., Minor, D.L., Milhollen, M.A., Burgess, M.W. & Kim, P.S. (1996) Identification of D-peptide ligands through mirror-image phage display. Science 271, 1854-1857.
  • 65. Ku, J. & Schultz, P.G. (1995) Alternate protein frameworks for molecular recognition. I*roc. Natl. Acad. ScL U.S.A. 92, 6552-6556.
  • 66. Nord, K., Gunneriusson, E., Ringdahl, J., Stahl, S., Uhlen, M. & Nygren, P.-A. (1997) Binding proteins selected from combinatorial libraries of an «-helical bacterial receptor do­main. Nature Biotechnology 15, 772-777.
  • 67. Gu, H., Yi, Q., Bray, S.T., Riddle, D.S., Shiau, A.K. & Baker, D. (1995) A phage display sys­tem for studying the sequence determinants of protein folding. Protein Sci. 4, 1108-1117.
  • 68. Rebar, E.J., Greisman. H.A. & Pabo, C.O. (1996) Phage display methods for selecting zinc finger proteins with novel DNA-binding specificities. Methods Enzymol. 267,129-149.
  • 69. Choo, Y. & Klug, A. (1995) Designing DNA- binding proteins on the surface of filamentous phage. Curr. Opin. Biotech. 6, 431-436.
  • 70. Harris, L.J., Larson, S.B., Hasel, K.W. & McPherson, A. (1997) Refined structure of an intact IgG2A monoclonal antibody. Biochemis­try 36, 1581-1589.
  • 71. Elrod-Erickson, M., Rould, M.A., Nekludova, L. & Pabo, C.O. (1996) Zif268 protein-DNA complex refined at 1.6 A: A model for under­standing zinc finger-DNA interactions. Struc­ture 4, 1171-1180

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-86b328da-7ed4-4c8b-a5a5-8b59d362a48f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.