PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1995 | 42 | 5 |

Tytuł artykułu

Wplyw drobnoustrojow glebowych na rozwoj Rhizobium i Bradyrhizobium i ich symbioze z roslinami motylkowatymi. Czesc II. Wplyw bakterii z rodzaju Pseudomonas

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

PL

Abstrakty

EN
The data presented in this article were obtained from studies on the effect of pseudomonads on the growth and development of legume plants and on their symbiosis with Rhizobium and Bradyrhizobium. The conducted investigations have proven that pseudomonads are typical microorganisms in the rhizosphere of cultivated plants and show root colonization ability. The effectiveness of the root colonization depends on: the chemical composition of root exudates and their chemotaxic properties; the mobility of the Pseudomonas bacteria cells; the reaction between polysaccharides on the bacterial cell surface and glycoproteins in the surface of the roots; competition abilities of the bacterial strains; soil properties and many other factors. It has been proved that pseudomonads can stimulate, inhibit or show no effect on the development and yield of the host plant. The means by which the bacterial strains can influence plant development depends on the kind and concentration of metabolites produced by the tested strain and the properties of the plant. The mechanism of positive effect of pseudomonads on the plant is the protection of the host plant against its pathogens, due to the abllity of bacteria to produce siderophores (especially of the pseudobactin-pioverdin group) and antibiotics. Some representatives of Pseudomonas can mobilize phosphate ions from poorly soluble inorganic compounds and can release growth stimulators and vitamins. Among the pseudomonads are many phytopathogenic strains as well as many strain negatively influencing plant growth without visible symptoms of disease. This negative influence could be the result of disturbances in the supply to the plant of nutrients and growth stimulators caused by pseudomonads negatively affecting the soll microorganisms from the PGPR group and stimulating microorganisms from the DRMO group.

Wydawca

-

Rocznik

Tom

42

Numer

5

Opis fizyczny

s.77-87,bibliogr.

Twórcy

autor
  • Instytut Uprawy Nawozenia i Gleboznawstwa, Pulawy

Bibliografia

  • [1] Alagawadi A.R., Gaur A.C. 1988. Associative effect of Rhizobium and phosphate-solubilizing bacteria on the yield and nutrient uptake of chick-pea Plant and Soil 105: 241-246.
  • [2] Alström S. 1987. Influence of root-zone inhibiting bacteria on growth of plants and soil-borne fungal pathogenes. Praca doktorska, Szwecja, University of Agricultural Sciences, Upsala.
  • [3] Anderson A.J., Guerra D. 1985. Responses of bean to root colonization with Pseudomonas putida in hydroponic system. Phytopathology 75: 992-995.
  • [4] Anderson A.J., Tari P.H., Tepper C.S. 1988. Molecular studies on the role of a root surface agglutinin in adherence and colonization by Pseudomonas putida. Appl. Environ. Microbiol. 54: 375-380.
  • [5] Azcon-Aguilar C., Barea J.M. 1978. Effect of interactions between different culture fractions of „phospho-bacteria" and Rhizobium on mycorrhizal infection growth and nodulation of Medicago sativa. Can. J. Microbiol. 24: 520-524.
  • [6] Azcon-Aguilar C., Gianinazzi-Pearson V., Fardean J.C., Giannazzi S. 1986. Effect of vesicular- arbuscular mycorrhizal fungi and phosphate-salubilizing bacteria on growth and nutrition of soybean in a natural-calcareous soil amended with 32P - 45Ca - tricalcium phosphate. Plant and Soil 96: 3-15.
  • [7] Bakker P.A.H.M., Van Peer R., Schippers B. 1991. Suppresion of soil-borne plant pathogenes by fluorescent Pseudomonas: mechanism and prospects. W: Biotic Interaction and Soil-borne Diseases. Eds. Beemster A.B.R., Bollen G.J., Gerlach M., Ruissen M.A., Schippers B., Tempel A. Elsevier, Amsterdam: 221-230.
  • [8] Barash I. 1990. Iron, siderophores and plant-pathogen interaction. Phytoparasitica 18: 183-188.
  • [9] Bolton H. Jr., Elliott L.F. 1989. Toxin production by a rhizobacterial Pseudomonas sp. that inhibit wheat root growth. Plant and Soil 114: 269-278.
  • [10] Bolton H. Jr., Elliott L.F., Gurusiddaiah S., Fredrickson J.K. 1989. Characterization of a toxin produced by a rhizobacterial Pseudomonas sp. that inhibits wheat growth. Plant and Soil 114: 279-287.
  • [11] Bolton H. Jr., Elliott L.F., Turco R.F., Kennedy A.C. 1990. Rhizoplane colonization of pea seedlings by Rhizobium leguminosarum and a deleterious root colornizing Pseudomonas sp. and effect on plant growth. Plant and Soil 123: 121-124.
  • [12] Burns R.G., Alström S., Burton C.C., Dartnall A.M. 1989. Cyanogenetic microbes and phosphatase enzymes in the rhizosphere: properties and prospects for manipulation. W: Interrelationships between microorganisms and plants in soil. Proc. of Internat. Symp., Liblice, Czechosłowacja, 1977. Ed. Vancura V., Kunc F.
  • [13] Carson K.C., Holliday S., Glenn A.R., Dilworth M.J. 1992. Siderophore and organic acid production in root nodule bacteria. Archiv. Microbiolog. 157: 264-271.
  • [14] Defago G., Haas D. 1990. Pseudomonads as antagonists of soilborne plant pathogenes: Mode of action genetic analysis. Soil Biochemistry, Eds. Bollac J.M., Stotzky G., Marcel Dekker, New York, Basel: 249-291.
  • [15] Deryło M 1994. Bakterie z rodzaju Pseudomonas jako czynnik ochrony biologicznej. Ogólnopolskie Sympozjum: Oddziaływanie między mikroorganizmami i roślinami. Kazimierz Dolny. 1994: 18-19.
  • [16] Deryło M. SkorupskaA. 1992. Rhizobial siderophores as an iron source for clover. Physiol. Plant 85: 549- 553.
  • [17] Deryło M., Skorupska A. 1993. Enhancement of symbiotic nitrogen fixation by vitamin-secreting fluorescent Pseudomonas. Plant and Soil 154: 211-217.
  • [18] Dommergues Y.R. 1978. The plant-microorganisms system. W: Interactions Between Nonpathogenic Soil Microorganisms and Plants. Eds. Dommergues Y.R., Krupa S.V., Elsevier Scientific Publishing, New York 1-37.
  • [19] Elliot L.F., Lynch J.M 1985. Plant growth-inhibitory pseudomonads colonizing winter wheat Triticum aestivum L. Plant and Soil 84: 57-65.
  • [20] Fredrickson J.K., Elliott L.F. 1985. Colonization of winter wheat roots by inhibitory rhizobacteria. Soil Sci. Soc. Am. J. 49: 1171-1171.
  • [21] Fuhrmann J., Wollum A.G. 1989. Nodulation competition among Bradyrhizobium japonicum strains as influenced by rhizosphere bacteria and iron availability. Biol. Fertil. Soils 7: 108-112.
  • [22] Grimes H.D., Mount M.S. 1984. Influence of Pseudomonas putida on nodulation of Phaseolus vulgaris. Soil Biol. Biochem. 16: 27-30.
  • [23] Howie W.J., Cook R.J., Weller D.M 1987. Effect of soil matric potential and cell motility on wheat root colonization of fluorescent Pseudomonas suppressive to take-all. Phytophatology. 77: 286-292.
  • [24] Howie W.J., Echandi E. 1983. Influence of cultivar and soil type on plant growth and yield of potato. Soil Biol. Biochem. 15: 127-132.
  • [25] Höfte M., Mergeay M. Diels L., Verstraete W. 1989. Influence of stress on sideropiore production by fluorescent Pseudomonas. Arch. Intern. de Physiol. et de Biochemie. 97: B96.
  • [26] Höfte M, Seong K. Y., Jurkevitch E., Verstraete W. 1991. Proverdin production by the plant growth beneficial Pseudomonas strains 7NSK2: ecological significance in soil. Plant and Soil. 130: 249-257.
  • [27] Jordan D.C. 1989. Family Rhizobacteriacae. W: Bergey's Manual of Systematic Bacteriology. Eds. Krieg R.N., Holt J.G. 4: 230-256.
  • [28] Kloepper J.W., Lifshitz R., Schroth M.N. 1988. Pseudomonas inoculants to benefit plant production. ISI Atlas of Science: Animal and Plant Science 1: 60-64.
  • [29] Kowalczuk E. 1990. Symbiotyczne aspekty współzakażania koniczyny przez Rhizobium i Pseudomonas. Ogólnopolskie Sympozjum: Wpływ drobnoustrojów na wzrost i rozwój roślin. Puławy-Kazimierz Dolny. 1990: 12.
  • [30] Kurek E., Kobus J. 1990. Korzystne i szkodliwe oddziaływanie mikroflory ryzosferowej na wzrost i rozwój roślin. Post. Mikrobiol. 29(2): 103-123.
  • [31] Lemancean P., Alabouvetle C. 1993. Suppression of Fusarium Wilts by fluorescent Pseudomonads: mechanisms and applications. Biocontrol Science and Technol. 3: 219-234.
  • [32] Li D.M, Alexander M. 1988. Co-inoculation with antibiotic-producing bacteria to increse colonization and nodulation by Rhizobia. Plant and Soil. 108: 211-219.
  • [33] Loper J.E., Buyer J.S. 1991. Sideropiores in microbial interactions on plant surface. Molec. Plant-Microbe Interact. 4: 5-13.
  • [34] Loper J.E., Haack C., Schroth M.N. 1985. Population dynamics of soil Pseudomonas in the rhizosphere of potato Solanum tuberosum L. App. Environment. Microbiol. 49: 416-422.
  • [35] Meyer J.R., Linderman R.G. 1986. Response of subterranean clover to dual inoculation with vesicular-arbuscular mycorrizal fungi and a plant growth-promoting bacteriurn, Pseudomonas putida. Soil Biol. Biochem. 18: 185-190.
  • [36] Modi M., Shah K.S., Modi V.V. 1985. Isolation and characterization of catechol-like siderophores from cowpea Rhizobium. Arch. Microbiol. 141: 156-158.
  • [37] Parke, J.L., Moen R., Rovira A.D., Boven GD. 1986. Soil water flow affects the rhizosphere distribution of a seed-born biological control agent Pseudomonas fluorescens. Soil Biol. Biochem. 18: 583-588.
  • [38] Piotrowska-Seget z. 1994. Produkcja cyjanków przez ryzosferowe szczepy Pseudomonas fluorescens w ryzosferze. Ogólnopolskie Sympozjum: Oddziaływania między mikroorganizmami i roślinami. Kazimierz Dolny, maj 1994: 29.
  • [39] Polonenko D., Scher F.M. Kloepper J.W., Singleton C.A., Laliberle M., Zaleska I. 1987. Effect of root colonizing bacteria on nodulation of soybean roots by Bradyrhizobium japonicum. Can. J. Microbiol. 33: 498-503.
  • [40] Scher F.M. Kloepper J.W., Singleton C., Zaleska I.. Laliberle M. 1988. Colonization of soybean roots by Pseudomonas an Serratia species: Relationship to bacterial motility, chemotaxis. And generation time. Phytopatology 78: 1055- 1059.
  • [41] Schipper B., Bakker A.W., Bakker P.A.M 1987. Interaction of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Ann. Rev. Phytopathol. 25: 339-358.
  • [42] Schippers B., Bakker A.W., Bakker P.A.H.M., Van Peer R. 1991. Beneficial and deletrious effect of HCN-producing pseudomonas on rhizosphere interactions. W: The Rhizosphere and Plant Growth. Eds. Keister D.L.. Gregan P.B., Kluwer Acad.Publ. the Netherlands: 211-219.
  • [43] Seong K.Y., Höfte M., Boelens J., Verstraete W. 1991. Growth, survival. and root colonization of plant growth beneficial Pseudomonas fluorescens ANP15 and Pseudomonas aeruginosa 7NSK2 at different temperatures. Soil Biol. Biochem. 23: 423-428.
  • [44] Seong K. Y., Höfte M. Verstrete W. 1992. Acclimatization of plant growth promoting Pseudomonas strain 7NSK2 in soil: effect on population dynamics and plant growth. Soil Biol. Biochem. 24: 751-759.
  • [45] Skorupska A., Deryło M. Lorkiewicz Z. 1989. Siderophore production and utilization by Rhizobium trifoli. Biol. Metals. 2: 45-49.
  • [46] Sobieszczański J., Stempniewicz R., Krzyśko T. 1989. Pseudomonas sp. as producer of plant growth regulators. W: Interrelationships between microorganisms and plants in soil. Proc. of an Internat. Symp. Liblice. Czechoslovakia, 1987: 201-206.
  • [47] Vancura V. 1980. Fluorescens pseudomonads in the rhizosphere of plants and their relation to root exudates. Folia Microbiol. 25: 168-173.
  • [48] Vancura V. 1989. Inoculation of plants with Pseudomonas putida. W: Interrelationship; between microorganisms and plants in soil. Proc. of an Intern. Symp. Liblice, Czechoslovakia. 22-27 VI.1989. Eds. Vancura V., Kunc F.
  • [49] Van Peer R., Niemann G.J., Schippers B. 1991. Induced resistance and phytoalexin accumulation in biological control of fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81: 728-734.
  • [50] Voisard C., Keel C., Haas D., Defago G. 1989. Cyanide production by Pseudomonas fluorescens helps supress black root rot of tabacco under gnobiotic conditions. EMBO Journal 8: 351-358.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-86356832-dd8f-4d55-a2b5-a28368cb32f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.