PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 61 | 4 |

Tytuł artykułu

Systemically active human opiorphin is a potent yet non-addictive analgesic without drug tolerance effects

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Human opiorphin QRFSR-peptide protects enkephalins from degradation by human neutral endopeptidase (hNEP) and aminopeptidase-N (hAP-N) and inhibits pain perception in a behavioral model of mechanical acute pain (1). Here, using two other pain rat models, the tail-flick and the formalin tests, we assess the potency and duration of the antinociceptive action of opiorphin with reference to morphine. The occurrence of adverse effects with emphasis on the side-effect profile at equi-analgesic doses was compared. We demonstrate that opiorphin elicits minimal adverse morphine-associated effects, at doses (1-2 mg/kg, i.v.) that produce a comparable analgesic potency in both spinally controlled thermal-induced acute and peripheral chemical-induced tonic nociception. The analgesic response induced by opiorphin in the formalin-induced pain model preferentially requires activation of endogenous µ-opioid pathways. However, in contrast to exogenous µ-opioid agonists such as morphine, opiorphin, does not develop significant abuse liability or antinociceptive drug tolerance after subchronic treatment. In addition, anti-peristaltism was not observed. We conclude that opiorphin, by inhibiting the destruction of endogenous enkephalins, which are released according to the painful stimulus, activates restricted opioid pathways specifically involved in pain control, thus contributing to a greater balance between analgesia and side-effects than found with morphine. Therefore, opiorphin could give rise to new analgesics endowed with potencies similar to morphine but with fewer adverse effects than opioid agonists. Its chemical optimization, to generate functional derivatives endowed with better bioavailability properties than the native peptide, could lead to a potent class of physiological type analgesics.

Wydawca

-

Rocznik

Tom

61

Numer

4

Opis fizyczny

p.483-490,fig.,ref.

Twórcy

autor
  • Unite de Biochimie Structurale et Cellulaire/URA2185 - CNRS, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
autor
autor
autor
autor

Bibliografia

  • Wisner A, Dufour E, Messaoudi M, et al. Human opiorphin, a natural antinociceptive modulator of opioid-dependent pathways. Proc Natl Acad Sci USA 2006; 103: 17979-17984.
  • Merskey H, Bogduk N. Pain terms, a current list with definitions and notes on usage. Part III. In Classification of Chronic Pain, H Merskey, N Bogduk (eds). Seattle, International Association for the Study of Pain (IASP) Press, 1994, pp. 209-214.
  • McQuay H. Opioids in pain management. Lancet 1999; 353(9171): 2229-2232.
  • Meert TF, Vermeirsch HA. A preclinical comparison between different opioids: antinociceptive versus adverse effects. Pharmacol Biochem Behav 2005; 80: 309-326.
  • Konig M, Zimmer AM, Steiner H, et al. Pain responses, anxiety and aggression in mice deficient in pre-proenkephalin. Nature 1996; 383(6600): 535-538.
  • Raynor K, Kong H, Chen Y, et al. Pharmacological characterization of the cloned kappa-, delta-, and mu-opioid receptors. Mol Pharmacol 1994; 45: 330-334.
  • Belluzzi JD, Grant N, Garsky V, Sarantakis D, Wise CD, Stein L. Analgesia induced in vivo by central administration of enkephalin in rat. Nature 1976; 260(5552): 625-626.
  • Noble F, Banisadr G, Jardinaud F, et al. First discrete autoradiographic distribution of aminopeptidase N in various structures of rat brain and spinal cord using the selective iodinated inhibitor [125I]RB 129. Neuroscience 2001; 105: 479-488.
  • Waksman G, Hamel E, Delay-Goyet P, Roques BP. Neuronal localization of the neutral endopeptidase ‘enkephalinase’ in rat brain revealed by lesions and autoradiography. EMBO J 1986; 5: 3163-3166.
  • Noble F, Roques BP. Protection of endogenous enkephalin catabolism as natural approach to novel analgesic and antidepressant drugs. Expert Opin Ther Targets 2007; 11: 145-159.
  • Rosinski-Chupin I, Tronik D, Rougeon F. High level of accumulation of a mRNA coding for a precursor-like protein in the submaxillary gland of male rats. Proc Natl Acad Sci USA 1988; 85: 8553-8557.
  • Rougeot C, Rosinski-Chupin I, Mathison R, Rougeon F. Rodent submandibular gland peptide hormones and other biologically active peptides. Peptides 2000; 21: 443-455.
  • Rougeot C, Messaoudi M, Hermitte V, et al. Sialorphin, a natural inhibitor of rat membrane-bound neutral endopeptidase that displays analgesic activity. Proc Natl Acad Sci USA 2003; 100: 8549-8554.
  • Rougeot C, Messaoudi M. Identification of human opiorphin, a natural antinociceptive modulator of opioid-dependent pathways. Med Sci (Paris) 2007; 23: 33-35.
  • Ragnauth A, Schuller A, Morgan M, et al. Female preproenkephalin-knockout mice display altered emotional responses. Proc Natl Acad Sci USA 2001; 98: 1958-1963.
  • Nieto MM, Guen SL, Kieffer BL, Roques BP, Noble F. Physiological control of emotion-related behaviors by endogenous enkephalins involves essentially the delta opioid receptors. Neuroscience 2005; 135: 305-313.
  • Le Bars D, Gozariu M, Cadden SW. Acute pain measurement in animals. Part 1. Ann Fr Anesth Reanim 2001; 20(4): 347-365.
  • van Ree JM, Gerrits MA, Vanderschuren LJ. Opioids, reward and addiction: an encounter of biology, psychology, and medicine. Pharmacol Rev 1999; 51: 341-396.
  • Sakoori K, Murphy NP. Central administration of nociceptin/orphanin FQ blocks the acquisition of conditioned place preference to morphine and cocaine, but not conditioned place aversion to naloxone in mice. Psychopharmacology (Berl) 2004; 172: 129-136.
  • Tian XZ, Chen J, Xiong W, He T, Chen Q. Effects and underlying mechanisms of human opiorphin on colonic motility and nociception in mice. Peptides 2009; 30: 1348-1354.
  • Noble F, Benturquia N, Bilkei-Gorzo A, Zimmer A, Roques BP. Use of preproenkephalin knockout mice and selective inhibitors of enkephalinases to investigate the role of enkephalins in various behaviours. Psychopharmacology (Berl) 2008; 196: 327-335.
  • Matthes HW, Maldonado R, Simonin F, et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. (see comments). Nature 1996; 383(6603): 819-823.
  • Yoburn BC, Purohit V, Patel K, Zhang Q. Opioid agonist and antagonist treatment differentially regulates immunoreactive mu-opioid receptors and dynamin-2 in vivo. Eur J Pharmacol 2004; 498: 87-96.
  • Ambrose LM, Gallagher SM, Unterwald EM, Van Bockstaele EJ. Dopamine-D1 and delta-opioid receptors co-exist in rat striatal neurons. Neurosci Lett 2006; 399:191-196.
  • Koob GF, Le Moal M. Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 2001; 24: 97-129.
  • Adamczyk P, McCreary AC, Przegalinski E, Mierzejewski P, Bienkowski P, Filip M. The effects of fatty acid amide hydrolase inhibitors on maintenance of cocaine and food self-administration and on reinstatement of cocaine-seeking and food-taking behavior in rats. J Physiol Pharmacol 2009; 60(3): 119-125.
  • Tanda G, Goldberg SR. Cannabinoids: reward, dependence, and underlying neurochemical mechanisms - a review of recent preclinical data. Psychopharmacology (Berl) 2003; 169: 115-134.
  • Mordarski S, Lysenko L, Gerber H, Zietek M, Gredes T, Dominiak M. The effect of treatment with fentanyl patches on pain relief and improvement in overall daily functioning in patients with postherpetic neuralgia. J Physiol Pharmacol 2009; 60(Suppl 8): 31-35.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-85e1b948-34df-48b7-ac5e-8dc6d938386f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.