EN
Human opiorphin QRFSR-peptide protects enkephalins from degradation by human neutral endopeptidase (hNEP) and aminopeptidase-N (hAP-N) and inhibits pain perception in a behavioral model of mechanical acute pain (1). Here, using two other pain rat models, the tail-flick and the formalin tests, we assess the potency and duration of the antinociceptive action of opiorphin with reference to morphine. The occurrence of adverse effects with emphasis on the side-effect profile at equi-analgesic doses was compared. We demonstrate that opiorphin elicits minimal adverse morphine-associated effects, at doses (1-2 mg/kg, i.v.) that produce a comparable analgesic potency in both spinally controlled thermal-induced acute and peripheral chemical-induced tonic nociception. The analgesic response induced by opiorphin in the formalin-induced pain model preferentially requires activation of endogenous µ-opioid pathways. However, in contrast to exogenous µ-opioid agonists such as morphine, opiorphin, does not develop significant abuse liability or antinociceptive drug tolerance after subchronic treatment. In addition, anti-peristaltism was not observed. We conclude that opiorphin, by inhibiting the destruction of endogenous enkephalins, which are released according to the painful stimulus, activates restricted opioid pathways specifically involved in pain control, thus contributing to a greater balance between analgesia and side-effects than found with morphine. Therefore, opiorphin could give rise to new analgesics endowed with potencies similar to morphine but with fewer adverse effects than opioid agonists. Its chemical optimization, to generate functional derivatives endowed with better bioavailability properties than the native peptide, could lead to a potent class of physiological type analgesics.