PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 08 | 2 |

Tytuł artykułu

DNA damage caused by lipid peroxidation products

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Lipid peroxidation is a process involving the oxidation of polyunsaturated fatty acids (PUFAs), which are basic components of biological membranes. Reactive electrophilic compounds are formed during lipid peroxidation, mainly α,β-unsaturated aldehydes. These compounds yield a number of adducts with DNA. Among them, propeno and substituted propano adducts of deoxyguanosine with malondialdehyde (MDA), acrolein, crotonaldehyde and etheno adducts, resulting from the reactions of DNA bases with epoxy aldehydes, are a very important group of adducts. The epoxy aldehydes are more reactive towards DNA than the parent unsaturated aldehydes. The compounds resulting from lipid peroxidation mostly react with DNA showing both genotoxic and mutagenic action; among them, 4-hydroxynonenal is the most genotoxic, while MDA is the most mutagenic. DNA damage caused by the adducts of lipid peroxidation products with DNA can be removed by the repairing action of glycosylases. The formed adducts have been hitherto analyzed using the IPPA (Imunopurification-32P-postlabelling assay) method and via gas chromatography/electron capture negtive chemical ionization/mass spectrometry (GC/EC NCI/MS). A combination of liquid chromatography with electrospray tandem mass spectrometry (LC/ES-MSMS) with labelled inner standard has mainly been used in recent years.

Wydawca

-

Rocznik

Tom

08

Numer

2

Opis fizyczny

p.391-413,fig.

Twórcy

autor
  • Medical Academy of Bialystok, Mickiewicza 2A, P.O.Box 14, 15-230 Bialystok 8, Poland

Bibliografia

  • 1.Marnett, L.J. Oxyradicals and DNA damage. Carcinogenesis 21 (2000) 361-370.
  • 2.Porter, N.A. Mechanisms for the autoxidation of polyunsaturated lipids. Acc. Chem. Res. 19 (1986) 262-268.
  • 3.Marnett, L.J. Lipid peroxidation - DNA damage by malondialdehyde. Mut. Res. 424 (1999) 83-95.
  • 4.Pryor, W.A. Oxy-radicals and related species: their formation, lifetimes, and reactions. Annu. Rev. Physiol. 48 (1986) 657-667.
  • 5.Barclay, L.R.C., Locke, S.J., MacNeil, J.M., VanKessel, J., Burton, G.W. and Ingold, K.U. Autoxidation of micelles and model membranes. Quantitative kinetic measurements can be made by using either water-soluble or lipid-soluble chainbreaking antioxidants. J. Am. Chem. Soc. 106 (1984) 2479-2481.
  • 6.Waldeck, A.R. and Stocker, R. Radical-initiated lipid peroxidation in low density lipoproteins: insights obtained from kinetic modeling. Chem. Res. Toxicol. 9 (1996) 954-964.
  • 7.Pryor, W.A. and Stanley, J.P. A suggested mechanism for the production of malondialdehyde during the autoxidation of polyunsaturated fatty acids. Non-enzymatic production of prostaglandin endoperoxides during autoxidation. J. Org. Chem. 40 (1975) 3615-3617.
  • 8.Morrow, J.D. and Roberts, L.J. The isoprostanes-current knowledge and directions for future research. Biochem. Pharmacol. 51 (1996) 1-9.
  • 9.Hamberg, M. and Samuelsson, B. On the mechanism of the biosynthesis of prostaglandins E1 and F1α. J. Biol. Chem. 242 (1967) 5336-5343.
  • 10.Praticò, G., Iuliano, L., Mauriello A., Spagnoli, L., Lawson, J.A., Maclouf, J., Violi, F. and FitzGerald, G.A. Localization of distinct F2-isoprostanes in human atherosclerotic lesions. J. Clin. Invest. 100 (1997) 2028-2034.
  • 11.Mallat, Z., Philip, I., Lebret M., Chatel, D., Maclouf, J. and Tedgui, A. Elevated levels of 8-iso-prostaglandin F2α in pericardial fluid of patients with heart failure. Circulation 97 (1998) 1536-1539.
  • 12.Richelle, M., Turini, M. E., Guidoux R., Tavazzi, I., Metairon, S. and Fay, L.B. Urinary isoprostane excrection is not confounded by the lipid content of the diet. FEBS Lett. 459 (1999) 259-262.
  • 13.Lawson, J.A., Rokach, J. and FitzGerald, G.A. Isoprostanes: formation, analysis and use as indices of lipid peroxidation in vivo. J. Biol. Chem. 247 (1999) 24441-24444.
  • 14.Davi, G., Ciabattoni, G., Consoli A., Mezzetti, A., Falco, A., Santarone, S., Pennese, E., Vitacolonna, E., Bucciarelli, T., Costantini, F., Capani, F. and Patrono, C. In vivo formation of 8-iso-PGF2α and platelet activation in diabetes mellitus: effects of improved metabolic control and vitamin E supplementation. Circulation 99 (1999) 224-229.
  • 15.Praticò, D. F2-isoprostanes: sensitive and specific non-invasive indices of lipid peroxidation in vivo. Atherosclerosis 147 (1999) 1-10.
  • 16.Li, H., Lawson, J.A., Reilly M., Adiyaman, M., Hwang, S.-W., Rokach, J. and FitzGerald, G.A. Quantitative high performance liquid chromatography/ tandem mass spectrometric analysis of the four classes of F2-isoprostanes in human urine. Proc. Natl. Acad. Sci. USA 96 (1999) 13381-13386.
  • 17.Basu, S. Metabolism of 8-iso-prostaglandin PGF2α. FEBS Lett. 428 (1998) 32-36.
  • 18.Buettner, G.R. The pecking order of free radicals and antioxidants: Lipid peroxidation, α-tocopherol, and ascorbate. Arch. Biochem. Biophys. 300 (1993) 535-543.
  • 19.Halliwell, B. Oxidation of low-density lipoproteins: Questions of initiation, propagation, and the effect of antioxidants. Am. J. Clinical Nutrition 61 (1995) 670-677.
  • 20.Solé, J., Huguet, J., Arola, L. and Romeu, A. In vivo effects of nickel and cadmium in rats on lipid peroxidation and ceruloplasmin activity. Bull. Environ. Contain. Toxicol. 44 (1990) 686-691.
  • 21.Sarkar, S., Yadav, P., Trivedi, R., Bansal A.K. and Bhatnagar, D. Cadmium-induced lipid peroxidation and the status of the antioxidant system in rat tissues. J. Trace Elem. Med. Biol. 9 (1995) 144-149.
  • 22.Xie, J., Funakoshi, T., Shimada, H. and Kojima, S. Effects of chelating agents on testicular toxicity in mice caused by acute exposure to nickel. Toxicology 103 (1995) 147-155.
  • 23.Hartwig, A., Klyszcz-Nasko, H., Schlepegrell, R. and Beyersmann, D. Cellular damage by ferric nitrilotriacetate and ferric citrate in V79 cells: Interrelationship between lipid peroxidation, DNA strand breaks and sister chromatid exchanges. Carcinogenesis 14 (1993) 107-112.
  • 24.Minotti, G. Sources and role of iron in lipid peroxidation. Chem. Res. Toxicol. 6 (1996) 134-146.
  • 25.Glass, G.A. and Stark, A.A. Promotion of glutathione-γ-glutamyl transpeptidase-dependent lipid peroxidation by copper and ceruloplasmin: The requirement for iron and the effects of antioxidants and antioxidant enzymes. Environ. Mol. Mutagen. 29 (1997) 73-80.
  • 26.Dix, T.A. and Aikens, J. Mechanisms and biological relevance of lipid peroxidation initiation. Chem. Res. Toxicol. 6 (1993) 2-18.
  • 27.Esterbauer, H. Lipid peroxidation products: formation, chemical properties and biological activities, in: Free Radicals in Liver Injury, (Pli, G., Cheeseman, K.H., Dianzani, M.U., Slater T.F., Eds.), IRL Press, Oxford, 1985, 29-47.
  • 28.Kaneko, T., Honda, S., Nakano, S.I. and Matsuo, M. Lethal effects of a linoleic acid hydroperoxide and its autoxidation products, unsaturated aliphatic aldehydes, on human dipoloid fibroblasts. Chem. Biol. Interact. 63 (1987) 127-137.
  • 29.Lee, S.H. and Blair, I.A. Characterization of 4-oxo-2-nonenal as a novel product of lipid peroxidation. Chem. Res. Toxicol. 13 (2000) 698-702.
  • 30.Ichihashi, K., Osawa, T., Toyokuni, S. and Uchida, K. Endogenous Formation of Protein Adducts with Carcinogenic Aldehydes. J. Biol. Chem. 276 (2001) 23903-23913.
  • 31.Uchida, K., Kanematsu, M., Morimitsu, Y., Osawa, T., Noguchi, N., Niki and E.J. Acrolein is a product of lipid peroxidation reaction. Formation of free acrolein and its conjugate with lysine residues in oxidized low density lipoproteins. J. Biol. Chem. 273 (1998) 16058-16066.
  • 32.Esterbauer, H., Zollner, H. and Schaur, R.J. Aldehydes formed by lipid peroxidation; mechanisms of formation, occurrence and determination. In: Membrane lipid oxidation, (Vigo-Pelfrey, C., Ed.), vol. I, Boca Raton, FL:CRC Press, 1990, 239-283.
  • 33.Grosch, W. Reactions of hydroperoxides - products of low molecular weight, in: Autoxidation of unsaturated lipids (Chan, H. W. S., Ed.), New York: Academic Press , 1987, 95-139.
  • 34.Segall, H.J., Wilson, D.W., Dallas, J.L. and Haddon, W.F. Trans-4- hydroxy-2-hexenal. A reactive metabolite from the macrocyclic pyrrolizidine alkaloid senecionine. Science 229 (1985) 472-475.
  • 35.Esterbauer, H. and Cheeseman, K.H. Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Meth. Enzymol. 186 (1990) 407-421.
  • 36.Esterbauer, H., Schaur, R.J. and Zollner, H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 11 (1991) 81-128.
  • 37.The role of cyclic nucleic acid adducts in carcinogenesis and mutagenesis, (Singer, B., Bartsch, H., Eds), IARC Sci. Publ. no. 70, International Agency for Research on Cancer, Lyon, France, 1986.
  • 38.Marnett L.J., in: DNA Adducts: Identyfication and Biological Significance, (Hemminki, K., Dipple, A., Shuker, D.E.G., Kadlubar, F.F., Segerbäck, D., Bartsch, H., Eds.), IARC Sci. Publ. no. 125, International Agency for Research on Cancer, Lyon, France, 1994, 151-163.
  • 39. Nath, R.G. and Chung, F.-L. Detection of exocyclic1,N2-propanodeoxyguanosine adducts as a common DNA lesions in rodents and humans. Proc. Natl. Acad. Sci. USA 91 (1994) 7491-7495.
  • 40.Chung, F.-L. and Hecht, S.S. Formation of cyclic 1,N2-adducts by reaction of deoxyguanosine with α-acetoxy-N-nitrosopyrrolidine, 4-(carbethoxynitrosamino) butanal, and crotonaldehyde. Cancer Res. 43 (1983) 1230-1235.
  • 41.Chung, F.-L., Young, R. and Hecht, S.S. Formation of cyclic 1,N2- propanodeoxyguanosine adducts in DNA upon reaction with acrolein or crotonaldehyde. Cancer Res. 44 (1984) 990-995.
  • 42.Burcham, P.C. Genotoxic lipid peroxidation products: their DNA damaging properties and role in formation of endogenous DNA adducts. Mutagenesis 13 (1998) 287-305.
  • 43.Schauenstein, E., Esterbauer, H. and Zollner, H. Aldehydes in biological system: Their natural occurence, and biological activities. London: Pion Ltd., 1977.
  • 44.Witz, G. Biological interactions of alpha, beta-unsaturated aldehydes. Free Radic. Biol. Med. 7 (1989) 333-349.
  • 45.Esterbauer, H., Zollner, H. and Scholz, N. Reaction of glutathione with conjugated carbonyls. Z. Naturforsch 30 (1975) 466-473.
  • 46.Sodum, R.S. and Shapiro, R. Reaction of acrolein with cytosine and adenine deratives. Bioorg. Chem. 16 (1988) 272-282.
  • 47.Chung, F.-L., Chen, H-J. C. and Nath, R.G. Lipid peroxidation as apotential endogenous source for the formation of exocyclic DNA adducts. Carcinogenesis 17 (1996) 2105-2111.
  • 48.Winter, C.K., Segall, H.J. and Haddon, W.F. Formation of cyclic adducts of deoxyguanosine with the aldehydes trans-4-hydroxy-2-hexenal and trans-4-hydroxy-2-nonenal in vitro. Cancer Res. 46 (1986) 5682-5686.
  • 49.Yi, P., Zhan, D.J., Samokyszyn, V.M., Doerge, D.R. and Fu, P.P. Synthesis and 32P-postlabelling/high-performance liquid chromatography separation of daistereomeric, N2-(1,3-propano)-2’-deoxyguanosine 3’-phosphate adducts formed from 4-hydroxy-2-nonenal. Chem. Res. Toxicol. 10 (1997) 1259-1265.
  • 50.Chung, F.-L., Nath, R.G., Ocando, J., Nishikawa, A. and Zhang, L. Deoxyguanosine Adducts of t-4-Hydroxy-2-nonenal Are Endogenous DNA Lesions in Rodents and Humans: Detection and Potential Sources. Cancer Res. 60 (2000) 1507-1511.
  • 51.Seto, H., Okuda, T., Takesue, T. and Ikemura, T. Reaction of malondialdehyde with nucleic acid: I. Formatin of fluorescent pyrimido[1,2 -a]purin-10(3H)-one nucleosides. Bull. Chem. Soc. Jpn. 56 (1983) 1799- 1802.
  • 52.Marnett, L.J., Basu, A.K., O’Hara, S.M., Weller, P.E., Rahman, A.F.M.M. and Oliver, J.P. Reaction of malondialdehyde with guanine nucleosides: formation of adducts containing oxadiazabicyclononene residues in the base-pairing region. J. Am. Chem. Soc. 108 (1986) 1348-1350.
  • 53.Chaudhary, A.K., Reddy, G.R., Blair, I.A. and Marnett, L.J. Characterization of an N6-oxo-propenyl-2ʼ-deoxyadenosine adduct in malondialdehyde-modified DNA using liquid chromatography electrospray ionization tandem mass spectrometry. Carcinogenesis 17 (1996) 1167- 1170.
  • 54.Nair, V. and Offerman, R.J. Ring-extended products from the reaction of epoxy carbonyl compounds and nucleic acid bases. J. Org. Chem. 50 (1985) 5627-5631.
  • 55.Sodum, R.S. and Chung, F.-L. Structural characterization of adducts formed in the reaction of 2,3-epoxy-4-hydroxynonanal with deoxyguanosine. Chem. Res. Toxicol. 2 (1989) 23-28.
  • 56.Chen, H.-J. C. and Chung, F.-L. Epoxidation of trans-4-hydroxy-2-nonenal by fatty acid hydroperoxides and hydrogen peroxide. Chem. Res. Toxicol. 9 (1996) 306-312.
  • 57.Golding, B.T., Slaich, P.K., Kennedy, G., Bleasdale, C. and Watson, W.P. Mechanism of formation of adducts from reaction of glycidaldehyde with
  • 2’-deoxyguanosine and/or guanosine. Chem. Res. Toxicol. 9 (1996) 147-157.
  • 58.Dedon, P.C., Plastaras, J.P., Rouzer, C.A. and Marnett, L.J. Indirect mutagenesis by oxidative DNA damage: Formation of the pyrimidopurinone adduct of deoxyguanosine by base propenal. Proc. Natl. Acad. Sci. USA 95 (1998) 11113-11116.
  • 59.Sodum, R.S. and Chung, F.-L. Stereoselective formation of in vitro nucleic acid adducts by 2,3-epoxy-4-hydroxynonanal. Cancer Res. 51 (1991) 137- 143.
  • 60.Burczynski, M.E., Sridhar, G.R., Palackal, N.T. and Penning, T.M. The reactive oxygen species and Michael acceptor-inducible human aldo-keto reductase AKR1C1 reduces the α,β-unsaturated aldehyde 4-hydroxy-2-nonenal to l,4-dihydroxy-2-nonene. J. Biol. Chem. 276 (2001) 2890-2897.
  • 61.Cadet, J., Carvalho, V.M., Onuki, J., Douki, T., Medeiros, H.M., Di Mascio, P.D., in: Exocyclic DNA Adducts in Mutagenesis and Carcinogenesis, (Singer, B., Bartsch, H., Eds.), IARC Sci. Publ. no. 150, International Agency for Research on Cancer, Lyon, France, 1999, 103-113.
  • 62.Carvalho, V.M., Asahara, F., Di Mascio, P., de Arruda Campos, I.P., Cadet, J. and Medeiros, H.M. Novel l,N(6)-etheno-2’-deoxyadenosine adducts from lipid peroxidation products. Chem. Res. Toxicol. 13 (2000) 397-405.
  • 63.Loureiro, A.P., Di Mascio, P., Gomes, O.F. and Medeiros, M.H. Trans, trans-2,4-decadienal-induced 1,N(2)-etheno-2’-deoxyguanosine adduct formation. Chem. Res. Toxicol. 13 (2000) 601-609.
  • 64.Rindgen, D., Nakajima, M., Wehrli, S., Xu, K. and Blair, I.A. Covalent modifications to 2’-deoxyguanosine by 4-oxo-2-nonenal a novel product of lipid peroxidation. Chem. Res. Toxicol. 12 (1999) 1195-1204.
  • 65.Rindgen, D., Lee, S.H., Nakajima, M. and Blair, I.A. Formation of a substituted 1,N6-etheno2’-deoxyadenosine adduct by lipid hydroperoxide-mediated generation of 4-oxo-2-nonenal. Chem. Res. Toxicol. 13 (2000) 846-852.
  • 66.Lee, S.H., Rindgen, D., Bible, R.A., Hajdu, E. and Blair, I.A. Characterization of 2’-deoxyadenosine adducts derived from 4-oxo-2-nonenal, a novel product of lipid peroxidation. Chem. Res. Toxicol. 13 (2000) 565-574.
  • 67.Foiles, P.G., Akerkar, S.A. and Chung, F.-L. Application of an immunoassay for cyclic acrolein deoxyguanosine adducts to assess their formation in DNA of salmonella typhimurium under conditions of mutation induction by acrolein. Carcinogenesis 10 (1989) 87-90.
  • 68.Chung, F.-L., Young, R. and Hecht, S.S. Detection of cyclic 1,N2- propanodeoxyguanosine adducts in DNA of rats treated with N-nitrosopyrrolidine and mice treated with crotonaldehyde. Carcinogenesis 10 (1989) 1291-1297.
  • 69.Chung, F.-L., Wang, M. and Hecht, S.S. Detection of exocyclic guanine adducts in hydrolysates of hepatic DNA of rats treated with N-nitrosopyrrolidine and in calf thymus DNA reacted with α-acetoxy-N-nitrosopyrrolidine. Cancer Res. 49 (1989) 2034-2041.
  • 70.Esterbauer, H., Eckl, P. and Ortner, A. Possible mutagens derived from lipids and lipid precursors. Mutat. Res. Rev. Genet. Toxicol. 238 (1990) 223-233.
  • 71.Eckl, P. and Esterbauer, H. Genotoxic effects of 4-hydroxynonenals. Adv. Biosci. 76 (1989) 141-157.
  • 72.Mukai, F.H. and Goldstein, B.D. Mutagenicity of malondialdehyde, a decomposition product of peroxidized polyunsaturated fatty acids. Science 191 (1976) 868-869.
  • 73.Shamberger, R.J., Andreone, T L. and Willis, C.E. Antioxidants and cancer: IV. Initiating activity of malonaldehyde as a carcinogen. J. Natl. Cancer Inst. 53 (1974) 1771-1773.
  • 74.Fischer, S.M., Olge, S., Marnett, L.J., Nesnow, S. and Slaga, T.J. The lack of initiating and/or promoting activity of sodium malondialdehyde on Sencar mouse skin. Cancer Lett. 19 (1983) 61-66.
  • 75.Spalding, J.W. Toxicology and carcinogenesis studies of malondialdehyde sodium salt (3-hydroxy-2-propenal, sodium salt) in F344/N rats and B6C3F1 mice. NTP Technical Report 331 (1988) 5-13.
  • 76.Benamira, M., Johnson, K., Chaudhary, A., Bruner, K., Tibbetts, C. and Marnett, L.J. Induction of mutations by replication of malondialdehyde-modified M13 DNA in Escherichia coli: determination of the extent of DNA modification, genetic requirements for mutagenesis, and types of mutations induced. Carcinogenesis 16 (1995) 93-99.
  • 77.Fink, S.P., Reddy, G.R. and Marnett, L.J. Mutagenicity in Escherichia coli of the major DNA adduct derived from the endogenous mutagen malondialdehyde. Proc. Natl. Acad. Sci. U.S.A. 94 (1997) 8652-8657.
  • 78.Kozekov, I. D., Nechev, L. V., Sanchez, A., Harris, C. M. Lloyd, R. S., Harris, T. M. Interchain cross-linking of DNA mediated by the principal adduct of acrolein. Chem. Res. Toxicol. 14 (2001) 1482-1485.
  • 79.Oesch, F., Adler, S., Rettelbach, R. and Doerjer, G. in: The role of Cyclic and Nucleic Acid Adducts in Carcinogenesis and Mutagenesis, (Singer, B., Bartsch, H., Eds.), IARC Sci. Publ. no. 70, International Agency for Research on Cancer, Lyon, France, 1986, 373-379.
  • 80.Rydberg, B., Qui, Z.-H., Dosanjh, M.K. and Singer, B. Partial purification of a human DNA glycosylase acting on the cyclic carcinogen adduct l,N6- ethenodeoxyadenosine. Cancer Res. 52 (1992) 1377-1379.
  • 81.Vollberg, T.M., Siegler, K.M., Cool, B.L. and Sirover, M.A. Isolation and characterization of the human uracil DNA glycosylase gene. Proc. Natl. Acad. Sci. USA 86 (1989) 8693-8697.
  • 82.Singer, B., Antoccia, A., Basu, A.K., Dosanjh, M.K., Fraenkel-Conrat, H., Gallagher, P.E., Kusmierek, J.T., Qiu Z.-H. and Rydberg, B. Both purified human 1,N6-ethenoadenine-binding protein and purified human 3-methyladenine-DNA glycosylase act on 1,N6-ethenoadenine and 3- metyladenine. Proc. Natl. Acad. Sci. USA 89 (1992) 93-97.
  • 83.Dosanjh, M.K., Chenna, A., Kim, E., Fraenkel-Conrat, H., Samson, L. and Singer, B. All four known cyclic adducts formed in DNA by the vinyl chloride metabolite chloroacetaldehyde are released by a human DNA glycosylase. Proc. Natl. Acad. Sci. USA 91 (1994) 1024-1028.
  • 84.Guliaev, A.B., Hang, B. and Singer, B. Structural insights by molecular dynamics simulations into differential repair efficiency for ethano-A versus etheno-A adducts by the human alkylpurine-DNA N-glycosylase. Nucleic Acids Res. 30 (2002) 3778-3787.
  • 85.Eberle, G., Barbin, A., Laib, R.J., Ciroussel, F., Thomale, J., Bartsch, H. and Rajewsky, M.F. l,N6-etheno-2’-deoxyadenosine and 3,N4-etheno-2’-deoxycytidine detected by monoclonal antibodies in lung and liver DNA of rats exposed to vinyl chloride. Carcinogenesis 10 (1989) 209-212.
  • 86.Fedtke, N., Boucheron, J.A., Walker, V.E. and Swenberg, J.A. Vinyl chloride-induced DNA adducts. II: Formation and persistence of 7-(2’-oxoethyl)guanine and N2,3-ethenoguanine in rat tissue DNA. Carcinogenesis 11 (1990) 1287-1292.
  • 87.Chaudhary, A.K., Nokubo, M., Reddy, G.R., Yeola, S.N., Morrow, J.D., Blair, I.A. and Marnett, L.J. Detection of endogenous malondialdehyde-deoxyguanosine adducts in human liver. Science 256 (1994) 1580-1582.
  • 88.Rouzer, C.A., Chaudhary, A.K., Nokubo, M., Ferguson, D.M., Reddy, G.R., Blair, I.A. and Marnett, L.J. Analysis of the malondialdehyde-2’-deoxyguanosine adduct, pyrimidopurinone, in human leukocyte DNA by gas chromatography/electron capture negtive chemical ionization/mass spectrometry. Chem. Res. Toxicol. 10 (1997) 181-188.
  • 89.Guichard, Y., Nair, J., Barbin, A. and Bartsch, H. Immunoaffinity clean-up combined with 32P-postlabelling analysis of l,N6-ethenoadenine and 3,N4-ethenocytosine in DNA, in: Postlabelling Methods for Detection of DNA Adducts (Phillips, D.H., Castegnaro, M., Bartsch, H. Eds.), vol. 124, IARC Sci. Publ. IARC, Lyon, 1993, 263-269.
  • 90.Nair, J., Barbin, A., Guichard, Y. and Bartsch, H. 1,N6-ethenodeoxyadenosine and 3,N4-ethenodeoxycytidine in liver DNA from humans and untreated rodents detected by immunoaffinity/32P- postlabelling. Carcinogenesis 16 (1995) 613-617.
  • 91.Leuratti, C., Singh, R., Deag, E.J., Griech, E., Hughes, R., Bingham, S.A., Plastaras, J.P., Marnett, L. J. and Shuker D.E.G., in: Exocyclic DNA Adducts in Mutagenesis and Carcinogenesis, (Singer, B„ Bartsch, H., Eds.), IARC Sci. Publ. no. 150, International Agency for Research on Cancer, Lyon, France, 1999, 197-203.
  • 92.Chen, H.-J.C., Chiang, L.-C., Tseng, M.C., Zhang, L.L., Ni, J. and Chung, F.-L. Detection and quantification of 1,N6-ethenoadenine in human placental DNA by mass spectrometry. Chem. Res. Toxicol 12 (1999) 1119-1126.
  • 93.Doerge, D.R., Churchwell, M.I., Fang, J-L. and Beland, F.A. Quantification of etheno-DNA addducts using liquid chromatography, on-line sample processing, and electrospray tandem mass spectrometry. Chem. Res. Toxicol 13 (2000) 1259-1264.
  • 94.Yen, T.Y., Christova-Gueoguieva, N.I., Scheller, N., Holt, S., Swenberg, J. A. and Charles, J.M. Quantitative analysis of the DNA adduct N2,3-ethenoguanine using LC-ESI/MS. J. Mass. Spectrom. 31 (1996) 1271- 1276.
  • 95.Roberts, D.W., Churchwell, M.I., Beland, F.A., Fang, J-L. and Doerge, D.R. Quantitative analysis of etheno-2’-deoxycytidine DNA adducts using on-line immunoaffinity chromatography coupled with LC/ES-MS/MS detection. Anal. Chem. 73 (2001) 303-309.
  • 96.Vaca, C.E., Vodicka, P. and Hemminki, K. Determination of malonaldehyde-modified 2’-deoxyguanosine-3’-monophosphate and DNA by 32P -postlabelling. Carcinogenesis 13 (1992) 593-599.
  • 97.Kautiainen, A., Vaca, C.E. and Granath, F. Studies on the relationship between hemoglobin and DNA adducts of malonaldehyde and their stability in vivo. Carcinogenesis 14 (1993) 705-708.
  • 98.Wang, M.-Y. and Liehr, J.G. Induction by estrogens of lipid peroxidation and lipid peroxide-derived malonaldehyde-DNA adducts in male Syrian hamsters: Role of lipid peoxidation in estrogen-induced kidney carcinogenesis. Carcinogenesis 16 (1995) 1941-1945.
  • 99.Vaca, C.E., Fang, J.-L., Mutanen, M. and Valsta, L. 32P -Postlabelling determination of DNA adducts of malonaldehyde in humans: total white blood cells and breast tissue. Carcinogenesis 16 (1995) 1847-1851.
  • 100.Fang, J.L., Vaca, C.E., Valsta, L.M. and Mutanen, M. Determination of DNA adducts of malonaldehyde in humans: effects of dietary fatty acid composition. Carcinogenesis 17 (1996) 1035-1040.
  • 101.Wang, M., Dhingra, K., Hittelman, W.N., Liehr, J.G., de Andrade, M. and Li, D. Lipid peroxidation-induced putative malondialdehyde-DNA adducts in human breast tissue. Cancer Epidemiol. Biomarkers Prev. 5 (1996) 705-710.
  • 102.Kadlubar, F., Anderson, K., Lang, N., Thompson, P., MacLeod, S., Mikhailova, M., Chou, M„ Plastaras, J., Marnett, L., Haussermann, S. and Bartsch, H. Comparison of endogenous DNA adducts levels in human pancreas. Proc. Am. Assoc. Cancer Res. 39 (1998) 286, Abstract.
  • 103.Chaudhary, A.K., Nokubo, M, Oglesby, T.D., Marnett, L.J. and Blair, I.A. Characterization of endogenous DNA adducts by liquid chromatography/electrospray ionization/tandem mass spectrometry. J. Mass Spectrom. 30 (1995) 1157-1166.
  • 104.Nair, J., Sone, H., Nagao, M., Barbin, A. and Bartsch, H. Copper-dependent formation of miscoding etheno-DNA aducts in the liver of Long Evans Cinnamon (LEC) rats developing hereditary hepatitis and hepatocellular carcinoma. Cancer Res. 56 (1996) 1267-1271.
  • 105.Nair, J., Carmichael, P.L., Femando, R.C., Phillips, D.H., Strain, A.J. and Bartsch, H. Lipid peroxidation-induced etheno-DNA adducts in liver of patients with the genetic metal storage disorders Wilson’s disease and primary hemochromatosis. Cancer Epidemiol. Biomarkers Prev. 7 (1998) 435-440.
  • 106.Nair, J., Gal, A., Tamir, S., Tannenbaum, S.R., Wogan, G.N. and Bartsch, H. Etheno adducts in spleen DNA of SJL mice stimulated to overproduce nitric oxide. Carcinogenesis 19 (1998) 2081-2084.
  • 107.Nair, J., Vaca, C.E., Velic, I., Mutanen, M., Valsta, L.M. and Bartsch, H. High dietary ω-6 polyunsaturated fatty acids drastically increase the formation of etheno-DNA base adducts in white blood cells of female subjects. Cancer Epidemiol. Biomarkers Prev. 6 (1997) 597-601.
  • 108.Nair, J., Barbin, A., Velic, I. and Bartsch, H. Etheno DNA-base adducts from endogenous reactive species. Mutat. Res. 424 (1999) 59-69.
  • 109.Götz, M.E., Wacker, M., Luckhaus, C., Wanek, P., Tatschner, T., Jellinger, K., Leblhuber, F., Ransmayr, G., Riederer, P. and Eder, E. Unaltered brain levels of 1,N2-propanodeoxyguanosine adducts of trans-4-hydroxy-2-nonenal in Alzheimer’s disease. Neurosci. Lett. 324 (2002) 49-52.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-858c27ec-51b1-4a29-ae1c-ad773a15c1ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.