PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 50 | 2 |

Tytuł artykułu

Antioxidative responses in radish [Raphanus sativus L.] plants stressed by copper and lead in nutrient solution and soil

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Radish (Raphanus sativus L.) is commonly grown in urban and suburban areas where the soil may be polluted with heavy metals such as Cu or Pb. In this study, short exposure of radish plantlets to 0.5 mM Cu or Pb in nutrient solution (two days) in growth chamber conditions elicited an antioxidative response, measured in terms of lipid peroxidation, protein and proline accumulation, and peroxidase and catalase activity. Longer exposure to Cu or Pb when radish was grown outdoors for 50 days in pots filled with field soil with different Cu and Pb content also resulted in higher lipid peroxidation and proline accumulation, and altered protein content and enzyme activity. The tested parameters of radish antioxidative responses to heavy metal stress differed depending on plant part (leaf or hypocotyl) and stress intensity (heavy metal content in growth medium, exposure duration). The reported data show that plants grown in soil from sites where this crop could be cultivated do show an oxidative stress response similar but not identical to that seen under laboratory treatment with heavy metals.

Wydawca

-

Rocznik

Tom

50

Numer

2

Opis fizyczny

p.79-86,fig.,ref.

Twórcy

autor
  • Faculty of Agriculture in Osijek, University of J.J.Strossmayer, Trg Sv.Trojstva 3, HR-31000Osijek, Croatia
autor
autor
autor
autor
autor
autor

Bibliografia

  • Aebi H. 1984. Catalase in vitro. Methods in enzymology 105: 121-126.
  • Alexander PD, Alloway BJ, and Dourado AM. 2006. Genotypic variation in the accumulation of Cd, Cu, Pb and Zn exhibited by six commonly grown vegetables. Environmental Pollution 104: 736-745.
  • Arora A, Sairam RK, and Srivastava GC. 2002. Oxidative stress and antioxidative system in plants. Current Science India 82: 1227-1238.
  • Bates LS, Waldren RP, and Teare ID. 1973. Rapid determination of free proline for water stress studies. Plant and Soil 39: 205-207.
  • Bhattacharjee S. 2005. Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal transduction in plants. Current Science India 89: 1113-1121.
  • Bi X, Feng X, Yang Y, Qui G, Li G, Li F, Liu T, Fu Z, and Jin Z. 2006. Environmental contamination of heavy metals from zinc smelting areas in Hezhang County, western Guizhou, China. Environment International 32: 883-890.
  • Bradford MM. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254.
  • Briat J-F, and Lebrun M. 1999. Plant responses to metal toxicity. Comptes Rendus de l'Académie des Sciences - Series III - Sciences de la Vie 322: 43-54.
  • Brun LA, Maillet J, Richarte J, Herrmann P, and Remy JC. 1998. Relationship between extractable copper, soil properties and copper uptake by wild plants in vineyard soils. Environmental Pollution 102: 151-161.
  • Chatterjee C, Sinha P, Dube BK, and Gopal R. 2006. Excess copper-induced oxidative damages and changes in radish physiology. Communications in Soil Science and Plant Analysis 37: 2069-2076.
  • Chaudičre J, and Ferrari-Iliou R. 1999. Intracellular antioxidants: from chemical to biochemical mechanisms. Food and Chemical Toxicology 37: 949-962.
  • Chen C-T, Chen T-H, Lo K-F, and Chiu C-Y. 2004. Effects of proline on copper transport in rice seedlings under excess copper stress. Plant Science 166: 103-111.
  • Chen E-L, Chen Y-A, Chen L-M, and Lin Z-M. 2002. Effect of copper on peroxidase activity and lignin content in Raphanus Sativus. Plant Physiology and Biochemistry 40: 439-444.
  • Chen YX, He YF, Luo YM, Yu YL, Lin Q, and Wong MH. 2003. Physiological mechanism of plant roots exposed to cadmium. Chemosphere 50: 789-793.
  • Choudhury S, and Panda SK. 2004. Induction of oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth. under lead and arsenic phytotoxicity. Current Science India 87: 342-348.
  • Claussen W. 2005. Proline as a measure of stress in tomato plants. Plant Science 168: 241-248.
  • Curtis IS. 2003. The noble radish: past, present and future. Trends in Plant Science 8: 305-307.
  • Cuypers A, Vangronsveld J, and Clijsters H. 2000. Biphasic effect of copper on the ascorbate-glutathione pathway in primary leaves of Phaseolus vulgaris seedlings during the early stages of metal assimilation. Physiologia Plantarum 110: 512-517.
  • Cuypers A, Vangronsveld J, and Clijsters H. 2002. Peroxidases in roots and primary leaves of Phaseolus vulgaris. Copper and Zinc Phytotoxicity: a comparison. Journal of Plant Physiology 159: 869-879.
  • Desikan R, A-H-Mackerness S, and Hancock JT, and Neill SJ. 2001. Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiology 127: 159-172.
  • Díaz J. Bernal A, Pomar F, and Merino F. 2001. Induction of shikimate dehydrogenase and peroxidase in pepper (Capsicum annum L.) seedlings in response to copper stress and its relation to lignification. Plant Science 161: 179-188.
  • Dixit V, Pandey V, and Shyam R. 2001. Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). Journal of Experimental Botany 52: 1101-1109.
  • Dučić T, and Polle A. 2005. Transport and detoxification of manganese and copper in plants. Brazilian Journal of Plant Physiology 17: 103-112.
  • Egnér H, Riehm H, and Domingo WR. 1960. Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nahrstoffzustandes der Boden II. Chemische Extractionsmetoden zu Phosphor- und Kaliumbestimmung. Kungl. Lantbrukshögskolans Annaler 26: 199-215.
  • Fang W, and Kao CH. 2000. Enhanced peroxidase activity in rice leaves in response to excess iron, copper and zinc. Plant Science 158: 71-76.
  • Foyer CH, and Noctor G. 2005. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17: 1866-1875.
  • Gratão PL, Polle A, Lea PJ, and Azevedo RA. 2005. Making the life of heavy metal-stressed plants a little easier. Functional Plant Biology 32: 481-494.
  • Heath RL, and Packer L. 1968. Photoperoxidation in isolated chloroplasts. I-Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125: 189-198.
  • Hu H, Fu Q, Li J, and Lu Y. 2005. Biomass and nutritional quality of pepper (Capsicum annum) and radish (Raphanus sativus) grown on grey Chao soil polluted by cadmium and lead. In: Li CJ et al. [eds.], Plant nutrition forfood security, human health and environmental protection, 782-785. Tsinghua University Press, Beijing, China.
  • ISO 14235: 1998(E). International Standard Organisation. Soil quality - Determination of organic carbon by sulfochromic oxidation.
  • ISO 11047: 1998. International Standard Organisation. Soil quality - Determination of cadmium, chromium, cobalt, copper, lead, manganese, nickel and zinc - Flame and electrothermal atomic absorption spectrometric methods.
  • Matysik J, Alia, Bhalu B, and Mohanty P. 2002. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Current Science India 82: 525-532.
  • Mithöfer A, Schulze B, and Boland W. 2004. Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Letters 566: 1-5.
  • Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7: 405-410.
  • Neill SJ, Desikan R, and Hancock JT. 2002. Hydrogen peroxide signalling. Current Opinion in Plant Biology 5: 388-395.
  • Ona LF, Alberto AM, Prudente JA, and Sigua GC. 2006. Levels of lead in urban soils from selected cities in a central region of the Philippines. Environmental Science and Pollution Research 13: 177-183.
  • Özturk L, and Demir Y. 2002. In vivo and vitro protective role of proline. Plant Growth Regulation 38: 259-264.
  • Pandey N, and Sharma CP. 2002. Effect of heavy metals Co+2, Ni+2 and Cd+2 on growth and metabolism of cabbage. Plant Science 163: 753-758.
  • Reid RJ, and Yermiyahu U. 2005. Measuring uptake of micronutrient and heavy metals in plants: problems and solutions. In: Li CJ et al. [eds.], Plant nutrition for food security, human health and environmental protection, 26-27. Tsinghua University Press, Beijing, China.
  • Sharma P, and Dubey RS. 2005. Lead toxicity in plants. Brazilian Journal of Plant Physiology 17: 35-52.
  • Shetty K. 2004. Role of proline-linked pentose phosphate pathway in biosynthesis of plant phenolics for functional food and environmental application: a review. Process Biochemistry 39: 789-804.
  • Siegel BZ, and Galston W. 1967. The peroxidase of Pisum sativum. Physiologia Plantarum 42: 212-226.
  • Singh RP, Tripathi RD, Sinha SK, Maheshwari R, and Srivastava HS. 1997. Response of higher plants to lead contaminated environment. Chemosphere 34: 2467-2493.
  • Siripornadulsil S, Traina S, Verma S, and Sayre R. 2002. Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14: 2837-2847.
  • Vanderauwera S, Zimmermann P, Rombauts S, Vanderbeele S, Langebartels C, Gruissem W, Inzé D, and van Breusegem F. 2005. Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiology 139: 806-821.
  • Verma S, and Dubey RS. 2003. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Science 164: 645-655.
  • Vitória AP, Lea PJ, and Azevedo RA. 2001. Antioxidant enzymes responses to cadmium in radish tissues. Phytochemistry 57: 701-710.
  • Wang S-H, Yang Z-M, Yang H, Lu B, Li S-Q, and Lu Y-P. 2004. Copper-induced stress and antioxidative responses in roots of Brassica juncea L. Botanical Bulletin of Academia Sinica 45: 203-212.
  • Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, van Montagu M, Inzé D, and van Camp W. 1997. Catalase is a sink for H2O2 and is indispensable for stress defence in C-3 plants. EMBO Journal 16: 4806-4816.
  • Yurekli F, and Porgali ZB. 2006. The effects of excessive exposure to copper in bean plants. Acta Biologica Cracoviensia Series Botanica 48/2: 7-13.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-84ecca82-3dda-4243-9c50-825941ee9603
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.