PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 19 | 4 |

Tytuł artykułu

Salt tolerance in crop plants: new approaches through tissue culture and gene regulation

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Recent approaches to study of salinity tolerance in crop plants have ranged from genetic mapping to molecular characterization of gene products induced by salt/drought stress. Transgenic plant design has allowed to test the effects of overexpression of specific prokaryotic or plant genes that are known to be up-regulated by salt/drought stress. This review summarizes current progress in the field in the context of adaptive metabolic and physiological responses to salt stress and their potential role in long term tolerance. Specifically considered are gene activation by salt, in view of proposed avenues for improved salt tolerance and the need to ascertain the additional influences of developmental regulation of such genes. Discussion includes the alternate genetic strategy we have pursued for improving salinity tolerance in alfalfa (Medicago sativa L.) and rice (Oryza sativa L.). This strategy combines single-step selection of salt-tolerant cells in culture, followed by regeneration of salt-tolerant plants and identification of genes important in conferring salt tolerance. We have postulated that activation or improved expression of a subset of genes encoding functions that are particularly vulnerable under conditions of salt-stress could counteract the molecular effects of such stress and could provide incremental improvements in tolerance. We have proceeded to identify the acquired specific changes in gene regulation for our salt-tolerant mutant cells and plants. One particularly interesting and novel gene isolate from the salt-tolerant cells is Alfin1, which encodes a putative zinc-finger regulatory protein, expressed predominantly in roots. We have demonstrated that this protein binds DNA in a sequence specific manner and may be potentially important in gene regulation in roots in response to salt and an important marker for salt tolerance in crop plants.

Wydawca

-

Rocznik

Tom

19

Numer

4

Opis fizyczny

p.435-449,fig.

Twórcy

autor
  • University of Nevada Reno, Reno, NV 89557, USA
autor

Bibliografia

  • Allen R.D. 1995. Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol., 107: 1049–1054.
  • Alscher R.G., Hess J.L. 1993. Antioxidants in higher plants. CRC Press, Boca Raton, FL.
  • Anderson J.V., Chevone B.I., Hess J.L. 1992. Seasonal variation in the antioxidant system of eastern white pine needles. Evidence for thermal dependence. Plant Physiol., 98: 501–508.
  • Bartels D., Engelhardt K., Rancarati R., Schneider K., Rotter M., Salamini F. 1991. An ABA and GA modulated gene expressed in the barley embryo encodes an aldose reductase related protein. EMBO J., 10: 1037–1043.
  • Bartels D., Hanke C., Schneider K., Michel D., Salamini F. 1992. A desiccation-related Elip-like gene from the resurrection plant Craterostigma plantagineum is regulated by light and ABA. EMBO J., 11: 2771–2778.
  • Binzel M.L., Hess F.D., Bressan R.A., Hassegawa P.M. 1988. Intracellular compartmentation of ions in salt adapted tobacco cells. Plant Physiol., 86: 607–614.
  • Blackwell T.K., Weintraub H. 1990. Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection. Science, 250: 1104–1110.
  • Bohnert H.J., Nelson D.E., Jensen R.G. 1995. Adaptations to environmental stresses. Plant Cell, 7: 1099–1111.
  • Cao Y., Ward J.M., Kelly W.B., Ichida A.M., Gaber R.F., Anderson J.A., Uozumi N., Schroeder J.I., Crawford N.M. 1995. Multiple genes, tissue specificity, and expression-dependent modulation contribute to the functional diversity of potassium channels in Arabidopsis thaliana. Plant Physiol., 109: 1093–1106.
  • Chang P-F. L., Cheah K.T., Narasimhan M.L., Hasegawa P.M., Bressan R.A. 1995. Osmotin gene expression is controlled by elicitor synergism. Physiol. Plant., 95: 620–626.
  • Claes B., Dekeyser R., Villarroel L.R., Van den Buicke M., Bauw G., Van Montagu M., Caplan A. 1990. Characterization of a rice gene showing organ-specific expression in response to salt stress and drought. Plant Cell, 2: 19–27.
  • Conklin P.L., Last R.L. 1995. Differential accumulation of antioxidant mRNAs in Arabidopsis thaliana exposed to ozone. Plant Physiol., 109: 203–212.
  • Conklin P.L., Williams E.H., Last R.L. 1996. Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc. Natl. Acad. Sci. USA, 93: 9970–9974.
  • Croughan T.P., Stavarek S.J., Rains D.W. 1978. Selection of NaCl tolerant line of cultured alfalfa cells. Crop Sci., 18: 959–963.
  • Cushman J.C., Meyer G., Michalowski C.B., Schmitt J.M., Bohnert H.J. 1989. Salt stress leads to differential expression of two isogenes of phosphoenolpyruvate carboxylase during Crassulacean acid metabolism induction in the common ice plant. Plant Cell, 1: 715–725.
  • Daniels M.J., Mirkov T.E., Chrispeels M.J. 1994. The plasma membrane of Arabidopsis thaliana contains a mercury-insensitive aquaporin that is a homolog of the tonoplast water channel protein TIP. Plant Physiol., 106: 1325–1333.
  • Delauney, A.J., Verma D.P.S. 1993. Proline biosynthesis and osmoregulation in plants. Plant J., 4: 215–223.
  • Deutch C.E., Winicov I. 1995. Post-transcriptional regulation of a salt-inducible alfalfa gene encoding a putative chimeric proline-rich cell wall protein. Plant Mol. Biol., 27: 411–418.
  • Ewing N.N., Wimmers L.E., Meyer D.J., Chetelat R.T., Bennet A.B. 1990. Molecular cloning of tomato plasma membrane H⁺-ATPase. Plant Physiol., 94: 1874–1881.
  • Fahrendorf T., Ni W., Shorrosh B.S., Dixon R.A. 1995. Stress responses in alfalfa (Medicago sativa L.) XIX. Transcriptional activation of oxidative pentose phosphate pathway genes at the onset of the isoflavonoid phytoalexin response. Plant Mol. Biol., 28: 885–900.
  • Flores S., Tobin E.M. 1988. Cytokinin modulation of LHCP mRNA levels: the involvement of post-transcriptional regulation. Plant Mol. Biol., 11: 409–415.
  • Foolad M.R., Jones R.A. 1993. Mapping salt-tolerance genes in tomato (Lycopersicon esculentum) using trait-based marker analysis. Theor. Appl. Genet., 87: 184–192.
  • Fougere F., Le Rudulier D., Streeter J.G. 1991. Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroids, and cytosol of alfalfa (Medicago sativa L.). Plant Physiol., 96: 1228–1236.
  • Foyer C.H., Descourvieres P., Kunert K.J. 1994. Protection against oxygen radicals: an important defence mechanism study in transgenic plants. Plant, Cell and Environment, 17: 507–523.
  • Gogos J.A., Kafatos, F.C. 1994. Determination of sequence preferences of DNA binding proteins using pooled solid-phase sequencing of low degeneracy oligonucleotide mixture. In: Methods in Molecular Biology. DNA-Protein Interactions: Principles and Protocols (G.G. Kneale, ed.). Humana Press Inc., Totowa, N.J.
  • Gossett D.R., Banks S.W., Millhollon E.P., Lucas M.C. 1996. Antioxidant response to NaCl stress in a control and an NaCl-tolerant cotton cell line grown in the presence of paraquat, buthionine sulfoximine, and exogenous glutathione. Plant Physiol., 112: 803–809.
  • Gronwald J.W., Suhayda C.G., Tal M., Shannon M.C. 1990. Reduction in plasma membrane ATPase activity of tomato roots by salt stress. Plant Science, 66: 145–153.
  • Guiltinan M.J., Marcotte W.R., Quatrano R.S. 1990. A plant leucine zipper protein recognizes an abscisic acid response element. Science, 250: 267–270.
  • Gupta A.S., Webb R.P., Holaday A.S., Allen, R.D. 1993. Overexpression of superoxide dismutase protects plants from oxidative stress. Induction of ascorbate peroxidase in superoxide dismutase-overexpressing plants. Plant Physiol., 103: 1067–1073.
  • Harper J.F., Manney L., DeWitt N.D., Yoo M.H., Sussman M.R. 1990. The Arabidopsis thaliana plasma membrane H⁺-ATPase multigene family. J. Biol. Chem., 265: 13601–13608.
  • Hu C-A.A., Delauney A.J., Verma D.P.S. 1992. A bifunctional enzyme Δ¹-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc. Natl. Acad. Sci. U.S.A., 89: 9354–9358.
  • Huang H., Mizukami Y., Hu Y., Ma H. 1993. Isolation and characterization of the binding sequences for the product of the Arabidopsis floral homeotic gene AGA-MOUS. Nucleic Acids Res., 21: 4769–4776.
  • Hurkman W.J., Tao H.P., Tanaka C.K. 1991. Germin-like polypeptides increase in barley roots during salt stress. Plant Physiol., 97: 366–374.
  • Ingram J., Bartels D. 1996. The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 47: 377–403.
  • Ishitani M., Majumder A.L., Bornhouser A., Michalowski C.B., Jensen R.G., Bohnert H.J. 1996. Coordinate transcriptional induction of myo-inositol metabolism during environmental stress. Plant J., 9: 537–548.
  • Kangasjärvi J., Talvinen J., Utriainen M., Karjalainen R. 1994. Plant defence systems induced by ozone. Plant, Cell and Environment, 17: 783–794.
  • Kishor P.B.K., Hong Z., Miao G-H., Hu C-A., Verma S.P.S. 1995. Overexpression of Δ¹-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol., 108: 1387–1394.
  • Kiyosue T., Yoshiba Y., Yamaguchi-Shinozaki K., Shinozaki K. 1996. A Nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but down-regulated by dehydration in Arabidopsis. Plant Cell, 8: 1323–1335.
  • Kononowicz A.K., Nelson D.E., Singh N.K., Hasegawa P.M., Bressan R.A. 1992. Regulation of the osmotin gene promoter. Plant Cell, 4: 513–524.
  • LaRosa P.C., Chen Z., Nelson D.E., Singh N.K., Hasegawa P.M., Bressan R.A. 1992. Osmotin gene expression is posttranscriptionally regulated. Plant Physiol., 100: 409–415.
  • Linthorst H.J.M 1991. Pathogenesis-related proteins of Plants. Crit. Rev. Plant Sci., 10: 123–150.
  • Mauhin V., Lutz Y., Dennefeld C., Alberga A. 1993. Definition of the DNA-binding site repertoire for the Drosophila transcription factor SNAIL. Nucleic Acids Res., 21: 3951–3957.
  • McCue K.F., Hanson A.D. 1992. Salt-inducible betaine aldehyde dehydrogenase from sugar beet: cDNA cloning and expression. Plant Molecular Biol., 18: 1–11.
  • McKersie B.D., Chen Y., De Beus M., Bowley S.R., Bowler C., Inze D., D’Halluin K., Botterman J. 1993. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol., 103: 1155–1163.
  • McKersie B.D., Bowley S.R., Harjanto E., Leprince O. 1996. Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol., 111: 1177–1181.
  • McNellis T.W., von Arnim A.G., Deng X-W. 1994. Overexpression of Arabidopsis COP1 results in partial suppression of light-mediated development: Evidence for a light inactivable repressor of photomorphogenesis. Plant Cell, 6: 1391–1400.
  • Michalowski C.B., Bohnert H.J. 1992. Nucleotide sequence of a root-specific transcript encoding a germinlike protein from the halophyte Mesembryanthemum crystallinum. Plant Physiol., 100: 537–538.
  • Munns R. 1993. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant, Cell and Environment, 16: 15–24.
  • Narasimhan M.L., Binzel M.L., Perez-Prat E., Chen Z., Nelson D.E., Singh N.K., Bressan R.A. Hasegawa P.M. 1991. NaCl regulation of tonoplast ATPase 70-kilodalton subunit mRNA in tobacco cells. Plant Physiol., 97: 562–568.
  • Nelson D.E., Ragothama K.G., Singh N.K., Hasegawa P.M., Bressan R.A. 1992. Analysis of structure and transcriptional activation of an osmotin gene. Plant Mol. Biol., 19: 577–588.
  • Nelson D., Salamini F., Bartels D. 1994. Abscisic acid promotes novel DNA-binding activity to a dessication-related promoter of Craterostigma plantagineum. Plant J., 5: 451–458.
  • Niu X., Bressan R.A., Hasegawa P.M., Pardo J.M. 1995. Ion homeostasis in NaCl stress environments. Plant Physiol., 109: 735–742.
  • Niu X., Guiltinan M.J. 1994. DNA binding specificity of the wheat bZIP protein EmBP-1. Nucleic Acids Res., 22: 4969–4978.
  • Olmos E., Hernandez J.A., Sevilla F., Hellin E. 1994. Induction of several antioxidant enzymes in the selection of a salt-tolerant cell line of Pisum sativum. J. Plant Physiol., 144: 594–598.
  • Perez-Prat E., Narasimhan M.L., Binzel M.L., Botella M.A., Chen Z., Valpuesta V., Bressan R.A., Hasegawa P.M. 1992. Induction of a putative, Ca²⁺-ATPase mRNA in NaCl-adapted Cells. Plant Physiol., 100: 1471–1478.
  • Petrusa L.M., Winicov I. 1997. Proline status in salt-tolerant and salt-sensitive alfalfa cell lines and plants in response to NaCl. Plant Physiol. Biochem., 35: 303–310.
  • Pilon-Smits E.A.H., Ebskamp M.J.M., Paul M.J., Jeuken M.J.W., Weisbeek P.J., Smeekens S.C.M. 1995. Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol., 107: 125–130.
  • Pitcher L.H., Repetti P., Zilinskas B.A. 1994. Over-production of ascorbate peroxidase protects transgenic tobacco plants against oxidative stress. Plant Phsyiol., 105(S)-a623
  • Quintero F.J., Garciadebias B., Rodriquez-Navarro A. 1996. The SAL1 gene of Arabidopsis, encoding an enzyme with 3′(2′),5′-bisphosphate nucleotidase and inositol polyphosphate 1-phosphatase activities, increases salt tolerance in yeast. Plant Cell, 8: 529–537.
  • Rauscher F.J., III Morris J.F., Tournay O.E., Cook D.M., Curran T. 1990. Binding of the Wilm’s tumor locus zinc finger protein to the EGR-1 consensus sequence. Science, 250: 1259–1262.
  • Redhead C.R., Palme K. 1996. The genes of plant signal transduction. Critical Reviews in Plant Sciences, 15: 425–454.
  • Rhodes D., Hanson A.D. 1993. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 44: 357–384.
  • Rubio F., Gassmann W., Schroeder J.I. 1996. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science, 270: 1660–1663.
  • Saneoka H., Nagasaka C., Hahn D.T., Yang W-J., Premachandra S., Joly R.J., Rhodes D. 1995. Salt tolerance of glycinebetaine-deficient and -containing maize lines. Plant Physiol., 107: 631–638.
  • Schaeffer H.J., Forsthefel N.R., Cushman J.C. 1995. Identification of enhancer and silencer regions involved in salt-responsive expression of Crassulacean acid metabolism (CAM) genes in the facultative halophyte Mesembryanthemum crystallinum. Plant Mol. Biol., 28: 205–218.
  • Sen Gupta A., Heinen J., Holaday A.S., Burke J.J., Allen R.D. 1993. Increased resistance to oxidative stress in transgenic plants that over-express chloroplastic Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA, 90: 1629–1633.
  • Shen B., Jensen R.G., Bohnert H.J. 1997. Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol., 113: 1177–1183.
  • Shen Q, Zhang P., Ho T-H.,D. 1996. Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell, 8: 1107–1119.
  • Smirnoff N., Colombe S.V. 1988. Drought influences the activity of enzymes of the chloroplast hydrogen peroxide scavenging system. J. Exp. Bot., 39: 1097–1108.
  • Spalding E.P., Goldsmith M.H.M. 1993. Activation of K⁺ channels in the plasma membrane of Arabidopsis by ATP produced photosynthetically. Plant Cell, 5: 477–484.
  • Speulman E., Salamini F. 1995. A barley cDNA clone with homology to the DNA-binding domain of the steroid hormone receptors. Plant Science, 106: 91–98.
  • Stockinger E.J., Gilmour S.J., Thomashow M.F. 1997. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA, 94: 1035–1040.
  • Struhl K. 1989. Helix-turn-helix, zinc-finger, and leucine-zipper motifs for eukaryotic transcriptional regulatory proteins. Trends Biochem. Sci. 14: 137–140.
  • Tarczynski M.C., Jensen R.G., Bohnert H.J. 1993. Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science, 259: 508–510.
  • Torsethaugen G., Pitcher L.H., Zilinskas B.A., Pell E.J. 1997. Overproduction of ascorbate peroxidase in the tobacco chloroplast does not provide protection against ozone. Plant Physiol., 114: 529–537.
  • Urao T., Yamaguchi-Shinozaki K., Urao S., Shinozaki K. 1993. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell, 5: 1529–1539.
  • Verbruggen N., Villaroel R., Van Montagu M. 1993. Osmoregulation of a pyrroline-5-carboxylate reductase gene in Arabidopsis thaliana. Plant Physiol., 103: 771–781.
  • Vernon D.M., Bohnert H.J. 1992. A novel methyl transferase induced by osmotic stress in the facultative halophyte Mesembryanthemum crystallinum. EMBO J., 11: 2077–2085.
  • Waterborg J.H., Harrington R.E., Winicov I. 1989. Differential histone acetylation in alfalfa (Medicago sativa L.) due to growth in NaCl. Plant Physiol., 90: 237–245.
  • Webb R.P., Allen R.D. 1995. Overexpression of a pea cytosolic ascorbate peroxidase in Nicotiana tabacum confers protection against the effects of paraquat. Plant Physiol., 108(S):a272.
  • Weigel D., Meyerowitz, E.M. 1994. The ABCs of floral homeotic genes. Cell, 78: 203–209.
  • Weisshaar B., Armstrong G.A., Block A., da Costa e Silva O., Hahlbrock K. 1991. Light-inducible and constitutively expressed DNA-binding protein recognizes a plant promoter element with functional relevance in light responsiveness. EMBO J., 10: 1777–1786.
  • Weretilnyk, E.A. and Hanson, A.D. 1990. Molecular cloning of a plant betaine-aldehyde dehydrogenase, an enzyme implicated in adaptation to salinity and drought. Proc. Natl. Acad. Sci. U.S.A. 87:2745–2749.
  • Wimmers L.E., Ewing N.N., Bennett A.B. 1992. Higher plant Ca²⁺-ATPase: primary structure and regulation of mRNA abundance by salt. Proc. Natl. Acad. Sci. U.S.A., 89: 9205–9209.
  • Winicov I. 1990. Gene expression in salt tolerant alfalfa cell cultures and the salt tolerant plants regenerated from these cultures. In: Progress in Plant Cellular and Molecular Biology. Eds. H.J.J. Nijkamp, L.H.W. Van der Plas and J. Van Aartrijk. Kluwer Academic Press, The Netherlands, pp. 142–147.
  • Winicov I. 1991. Characterization of salt tolerant alfalfa (Medicago sativa L.) plants regenerated from salt tolerant cell lines. Plant Cell Reports, 10: 561–564.
  • Winicov I. 1992. Enhanced gene expression in salt tolerance of alfalfa cell lines and regenerated plants. In: Control of Plant Gene Expression. ed. D.P.S. Verma. Chapter 18. pp. 301–309. CRC Press, Inc., Boca Raton, FL.
  • Winicov I. 1993. cDNA encoding putative zinc finger motifs from salt-tolerant alfalfa (Medicago sativa L.) cells. Plant Phys., 102: 681–682.
  • Winicov I. 1994. Gene expression in relation to salt tolerance. In: Stress Induced Gene Expression in Plants. Ed. A.S. Basra. Harwood Academic Publishers. pp. 61–85.
  • Winicov I. 1996. Characterization of rice (Oryza sativa L.) plants regenerated from salt-tolerant cell lines. Plant Sci., 113: 105–111.
  • Winicov I., Button J.D. 1991. Accumulation of photosynthesis gene transcripts in response to sodium chloride by salt-tolerant alfalfa cells. Planta, 183: 478–483.
  • Winicov I., Deutch C.E. 1994. Characterization of a cDNA clone from salt-tolerant alfalfa cells that identifies salt inducible root specific transcripts. J. Plant Physiol., 144: 222–228.
  • Winicov I., Krishnan M. 1996. Transcriptional and post-transcriptional activation of genes in salt-tolerant alfalfa cells. Planta, 200: 397–404.
  • Winicov I., Seemann J.R. 1990. Expression of genes for photosynthesis and the relationship to salt tolerance of alfalfa (Medicago sativa) cells. Plant Cell Physiol., 31: 1155–1161.
  • Winicov I., Shirzadegan M. 1997. Tissue specific modulation of salt inducible gene expression: callus versus whole plant response in salt tolerant alfalfa. Physiol. Plant., 100: 314–319.
  • Winicov I., Waterborg J.H., Harrington R.E., McCoy T.J. 1989. Messenger RNA induction in cellular salt tolerance of alfalfa (Medicago sativa). Plant Cell Reports, 8: 6–12.
  • Wu S-J., Ding L., Zhu J-K. 1996. SOSI, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell, 8: 617–627.
  • Wyn Jones R.G., Storey R. 1981. Betaines. In: Physiology and Biochemistry of Drought Resistance in Plants. Eds.: L.G. Paleg and D. Aspinall. Academic Press, New York, NY, pp. 171–204.
  • Yamaguchi-Shinozaki K., Koizumi M., Urao S., Shinozaki K. 1992. Molecular cloning and characterization of nine cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: Sequence analysis of one cDNA clone that encodes a putative trans-membrane channel protein. Plant Cell Physiol., 33: 217–224.
  • Yanofsky M.F. 1995. Floral meristems to floral organs: Genes controlling early events in Arabidopsis flower development. Annu. Rev. Plant Physiol. Plant Mol. Biol., 46: 167–188.
  • Xu D., Duan X., Wang B., Hong B., Ho T-H.D., Wu R. 1996. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol., 110: 249–257.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-840db5df-b986-4c2a-bc67-9cc08fda8fef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.