Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 09 | 1 |

Tytuł artykułu

NMR studies of calcium-binding to mutant alpha-spectrin EF-hands

Warianty tytułu

Języki publikacji



The co-operative calcium binding mechanism of the two C-terminal EF-hands of human αII-spectrin has been investigated by site-specific mutagenesis and multi-dimensional NMR spectroscopy. To analyse the calcium binding of each EF-hand independently, two mutant structures (E33A and D69S) of wild type α-spectrin were prepared. According to NMR analysis both E33A and D69S were properly folded. The unmutated EF-hand in these mutants remained nearly intact and active in calcium binding, whereas the mutated EF-hand lost its affinity for calcium completely. The apparent calcium binding affinity of the E33A mutant was much lower compared to the D39S mutant (~2470 μM and ~240 μM, respectively). When the chemical shift perturbations were followed upon calcium titration, a positive correlation between the D69S mutant and the binding of the first calcium ion to the wild type was revealed. These observations showed that the first EF-hand in spectrin binds the first calcium ion and thereby triggers a conformational change that allows the second calcium ion to bind to the other EF-hand.








Opis fizyczny



  • Umea University, SE-901 87 Umea, Sweden


  • 1. Bennett, V. and Baines, A.J. Spectrin and ankyrin-based pathways: Metazoan inventions for integrating cells into tissues. Phys. Rev. 81 (2001) 1353-1392.
  • 2. Bennett, V. and Gilligan, D.M. The spectrin-based membrane skeleton and micron-scale organization of the plasma membrane. Annu. Rev. Cell Biol. 9 (1993) 27-66.
  • 3. Delaunay, J. Molecular basis of red cell membrane disorders. Acta Haematol. 108 (2002) 210-218.
  • 4. Beck, K.A. and Nelson, W.J. The spectrin-based membrane skeleton as a membrane protein-sorting machine. Am. J. Physiol. Cell. Physiol. 270 (1996) C1263-C1270.
  • 5. Yeaman, C., Grindstaff, K.K. and Nelson, W.J. New perspectives on mechanisms involved in generating epithelial cell polarity. Physiol. Rev. 79 (1999) 73-98.
  • 6. Barkalow, K.L., Italiano, J.E. Jr., Chou, D.E., Matsuoka, Y., Bennett, V. and Hartwig, J.H. α-Adducin dissociates from F-actin and spectrin during platelet activation. J. Cell Biol. 161 (2003) 557-570.
  • 7. Stabach, P.R., Cianci, C.D., Glantz, S.B., Zhang, Z. and Morrow, J.S. Site-directed mutagenesis of αII spectrin at codon 1175 modulates its μ-calpain susceptibility. Biochemistry 36 (1997) 57-65.
  • 8. Björk, J., Lundberg, S. and Backman, L. Characterization of the binding of calmodulin to non-erythroid spectrin. Eur. J. Cell Biol. 66 (1995) 200-204.
  • 9. Rotter, B., Kroviarski, Y., Nicolas, G., Dhermy, D. and Lecomte, M.C. AlphaII-spectrin is an in vitro target for caspase-2 and its cleavage is regulated by calmodulin binding. Biochem. J. (in press) (2003)
  • 10. Löfvenberg, L. and Backman, L. Calpain-induced proteolysis of β-spectrin. FEBS Lett. 443 (1999) 89-92.
  • 11. Travé, G., Lacombe, P.J., Pfuhl, M., Saraste, M. and Pastore, A. Molecular mechanism of the calcium-induced conformational change in the spectrin EF-hands. EMBO J. 14 (1995) 4922-4931.
  • 12. Lundberg, S., Buevich, A.V., Sethson, I., Edlund, U. and Backman, L. Calcium-binding mechanism of human nonerythroid α-spectrin EF-structures. Biochemistry 36 (1997) 7199-7208.
  • 13. Musacchio, A., Noble, M., Pauptit, R., Wierenga, R. and Saraste, M. Crystal structure of a Src-homology 3 (SH3) domain. Nature 359 (1992) 851-855.
  • 14. Hyvönen, M., Macias, M.J., Nilges, M., Oschkinat, H., Saraste, M. and Wilmanns, M. Structure of the binding site for inositol phosphates in a PH domain. EMBO J. 14 (1995) 4676-4685.
  • 15. Carugo, K.D., Banuelos, S. and Saraste, M. Crystal structure of a calponin homology domain. Nature Struct. Biol. 4 (1997) 175-179.
  • 16. Lundberg, S., Lehto, V.P. and Backman, L. Characterization of calcium binding to spectrins. Biochemistry 31 (1992) 5665-5671.
  • 17. Perrin, D. and Soeling, H.D. No evidence for calpain I involvement in fodrin rearrangements linked to regulated secretion. FEBS Lett. 311 (1992) 302-304.
  • 18. Dubreuil, R.R., Frankel, J., Wang, P., Howrylak, J., Kappil, M. and Grushko, T.A. Mutations of α spectrin and labial block cuprophilic cell differentiation and acid secretion in the middle midgut of Drosophila larvae. Dev. Biol. 194 (1998) 1-11.
  • 19. De Matteis, M.A. and Morrow, J.S. Spectrin tethers and mesh in the biosynthetic pathway. J. Cell Sci. 113 (2000) 2331-2343.
  • 20. Harris, A.S. and Morrow, J.S. Calmodulin and calcium-dependent protease I coordinately regulate the interaction of fodrin with actin. Proc. Natl. Acad. Sci. (USA) 87 (1990) 3009-3013.
  • 21. Wechsler, A. and Teichberg, V.I. Brain spectrin binding to the NMDA receptor is regulated by phosphorylation, calcium and calmodulin. EMBO J. 17 (1998) 3931-3939.
  • 22. Hirai, H. and Matsuda, S. Interaction of the C-terminal domain of delta glutamate receptor with spectrin in the dendritic spines of cultured Purkinje cells. Neurosci. Res. 34 (1999) 281-287.
  • 23. Wu, S., Sangerman, J., Li, M., Brough, G.H., Goodman, S.R. and Stevens, T. Essential control of an endothelial cell ISoc by the spectrin membrane skeleton. J. Cell Biol. 154 (2001) 1225-1234.
  • 24. Lundberg, S., Björk, J., Löfvenberg, L. and Backman, L. Cloning, expression and characterization of two putative calcium-binding sites in human non-erythroid α-spectrin. Eur. J. Biochem. 230 (1995) 658-665.
  • 25. Travé, G., Pastore, A., Hyvönen, M. and Saraste, M. The C-terminal domain of α-spectrin is structurally related to calmodulin. Eur. J. Biochem. 227 (1995) 35-42.
  • 26. Lewit-Bentley, A. and Rety, S. EF-hand calcium-binding proteins. Curr. Opin. Struct. Biol. 10 (2000) 637-643.
  • 27. Kretsinger, R.H. EF-hands reach out. Nature Struct. Biol. 3 (1996) 12-15.
  • 28. Moon, R.T. and McMahon, A.P. Generation of diversity in nonerythroid spectrins. Multiple polypeptides are predicted by sequence analysis of cDNAs encompassing the coding region of human nonerythroid α-spectrin. J. Biol. Chem. 265 (1990) 4427-4433.
  • 29. Wasenius, V.M., Saraste, M., Salven, P., Eraemaa, M., Holm, L. and Lehto, V.P. Primary structure of the brain α-spectrin. J. Cell Biol. 108 (1989) 79-93.
  • 30. Hong, W. and Doyle, D. Cloning and analysis of cDNA clones for rat kidney Alpha-spectrin. J. Biol. Chem. 264 (1989) 12758-12764.
  • 31. Dubreuil, R.R., Byers, T.J., Sillman, A.L., Bar-Zvi, D., Goldstein, L.S.B. and Branton, D. The complete sequence of Drosophila alpha-spectrin: Conservation of structural domains between alpha-spectrins and alpha-actinin. J. Cell Biol. 109 (1989) 2197-2205.
  • 32. Backman, L. Spectrins - a family of multifunctional proteins with affinity for calcium. Cell. Mol. Biol. Lett. 1 (1996) 35-48.
  • 33. Zhang, M., Tanaka, T. and Ikura, M. Calcium-induced conformational transition revealed by the solution structure of apo calmodulin. Nature Struct. Biol. 2 (1995) 758-767.
  • 34. Gagné, S.M., Tsuda, S., Li, M.X., Smillie, L.B. and Sykes, B.D. Structures of the troponin C regulatory domains in the apo and calcium-saturated states. Nature Struct. Biol. 2 (1995) 784-789.
  • 35. Andersson, M., Malmendal, A., Linse, S., Ivarsson, I., Forsen, S. and Svensson, L.A. Structural basis for the negative allostery between Ca2+- and Mg2+-binding in the intracellular Ca2+-receptor calbindin D9k. Protein Sci. 6 (1997) 1139-1147.
  • 36. Yap, K.L., Ames, J.B., Swindells, M.B. and Ikura, M. Diversity of conformational states and changes within the EF-hand protein superfamily. Proteins 37 (1999) 499-507.
  • 37. Mirzoeva, S., Weigand, S., Lukas, T.J., Shuvalova, L., Anderson, W.F. and Watterson, D.M. Analysis of the functional coupling between calmodulin's calcium binding and peptide recognition properties. Biochemistry 38 (1999) 3936-3947.
  • 38. Wishart, D.S., Sykes, B.D. and Richards, F.M. The chemical shift index: A fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31 (1992) 1647-1651.
  • 39. Szilágyi, L. Chemical shifts in proteins come of age. Prog. NMR Spectrosc. 27 (1995) 325-443.
  • 40. Gill, S.C. and von Hippel, P.H. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182 (1989) 319-326.
  • 41. Schägger, H. and von Jagow, G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166 (1987) 368-379.
  • 42. Brown, T.A. Molecular Biology. BIOS Scientific Publishers Limited, Oxford, 1991.
  • 43. Piotto, M., Saudek, V. and Sklenar, V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J. Biomol. NMR 2 (1992) 661-665.
  • 44. Kay, L.E., Keifer, P. and Saarinen, T. Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J. Am. Chem. Soc. 114 (1992) 10663-10665.
  • 45. Jeener, J., Meier, B.H., Bachmann, P. and Ernst, R.R. Investigation of exchange processes by two-dimensional NMR spectroscopy. J. Chem. Phys. 71 (1979) 4546-4553.
  • 46. Braunschweiler, L. and Ernst, R.R. Coherence transfer by isotropic mixing: application to proton correlation spectroscopy. J. Magn. Reson. 53 (1983) 521-528.
  • 47. Marion, D. and Wütrich, K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem. Biophys. Res. Commun. 113 (1983) 967-974.
  • 48. Malmendal, A., Carlstroem, G., Hambraeus, C., Drakenberg, T., Forsen, S. and Akke, M. Sequence and context dependence of EF-hand loop dynamics. An 15N relaxation study of a calcium-binding site mutant of calbindin D9k. Biochemistry 37 (1998) 2586-2595.
  • 49. Ohki, S.Y., Miura, K., Saito, M., Nakashima, K., Maekawa, H., Yazawa, M., Tsuda, S. and Hikichi, K. Secondary structure and Ca2+-binding property of the N-terminal half domain of calmodulin from yeast Saccharomyces cerevisiae as studied by NMR. J. Biochem. 119 (1996) 1045-1055.
  • 50. Pauls, T.L., Durussel, I., Berchtold, M.W. and Cox, J.A. Inactivation of individual Ca2+-binding sites in the paired EF-hand sites of parvalbumin reveals asymmetrical metal-binding properties. Biochemistry 33 (1994) 10393-10400.
  • 51. Sharma, Y., Chandani, S., Sukhaswami, M.B., Uma, L., Balasubramanian, D. and Fairwell, T. Modified helix-loop-helix motifs of calmodulin - The influence of the exchange of helical regions on calcium-binding affinity. Eur. J. Biochem. 243 (1997) 42-48.
  • 52. Babu, A., Su, H. and Gulati, J. The mechanism of Ca2+-coordination in the EF-hand of TnC, by cassette mutagenesis. Adv. Exp. Med. Biol. 332 (1993) 125-131.
  • 53. Drake, S.K., Lee, K.L. and Falke, J.J. Tuning the equilibrium ion affinity and selectivity of the EF-hand calcium binding motif: Substitutions at the gateway position. Biochemistry 35 (1996) 6697-6705.
  • 54. Strynadka, N.C.J. and James, M.N.G. Crystal structures of the helix loop helix calcium binding proteins. Annu. Rev. Biochem. 58 (1989) 951-998.
  • 55. Kretsinger, R.H., Tolbert, D., Nakayama, S. and Pearson, W. The EF-hand,
  • homologs and analogs. In: Novel Calcium-Binding Proteins, Fundamentals and Clinical Implications, (Heizmann, C.W., Ed.), Springer Verlag, 1991, 17-37.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.