PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 55 | 4 |

Tytuł artykułu

Analysis of the filamentous bacteriophage genomes integrated into Neisseria gonorrhoeae FA1090 chromosome

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Bioinformatic analysis of the genome sequence of Neisseria gonorrhoeae revealed presence of four specific prophage islands. Based on the similarity with other DNA phage sequences they seem to belong to the filamentous ssDNA phages group. Phages belonging to this group are also present in the genome of Neisseria meningitidis. The nucleotide and amino acids sequence of NgoΦ6 and NgoΦ7 show similar genetic organization and high homology on DNA and amino acid level. The NgoΦ9 contains only part of the genomes of the NgoΦ6-8 prophages. Several functionally same genes of different origin are duplicated, with no homology to their counterparts in phages NgoΦ6, NgoΦ7 and NgoΦ9. The prophage sequences of nucleotides of NgoΦ6 and NgoΦ7 contain specific blocks of genes responsible for phage DNA replication and structural proteins. Comparative analysis at nucleotide and amino acid level suggests that these sequences can encode functionally active phages. The genetic organization of the NgoΦ6 suggests that it can serve as a prototype of filamentous phage of N. gonorrhoeae. Presence of the genomic ssDNA of these phages in the cultures of N. gonorrhoeae confirms this conclusion.

Wydawca

-

Rocznik

Tom

55

Numer

4

Opis fizyczny

p.251-260,fig.,ref.

Twórcy

  • Warsaw University, Miecznikowa 1, 02-096 Warsaw, Poland
autor
autor

Bibliografia

  • Armstrong J., R.N. Perkham and J.E. Walker. 1981. Domain structure of bacteriophage fd adsorption protein. FEBS Lett. 135: 167-172.
  • Bille E, J.R. Zahar, A. Perrin, S.P. Kriz, K.A. Jolley, M.C. Maiden, C. Dervin, X. Nassif and C.R. Tinsley. 2005. A chromosomally integrated bacteriophage in inva sive meningococci. J. Exp. Med. 201: 1905-13.
  • Brüssow H., C. Canchaya and W.D. Hardt. 2004. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68: 560-602.
  • Campos J., E. Martiez, E. Suzarte, B.L. Rodriguez, K. Marrero, Y. Silva, T. Ledon, del R. Sol and R. Fando. 2003. VGJ phi, a novel filamentous phage of Vibrio cholerae, integrates into the same chromosomal site as CTX phi. J. Bacteriol. 185: 5685-5696.
  • Canchaya C, G. Fournous and H. Brussow. 2004. The impact of prophages on bacterial chromosomes. Mol. Microbiol. 53: 9-18.
  • Casjens S. 2003. Prophages and bacterial genomics: what have we learned so far? Mol. Microbiol. 49: 277-300.
  • Davis B.M., H.H. Kimsey, A.V. Kane and M.K. Waldor. 2002. A satellite phage-encoded antirepressor induces repressor aggregation and cholera toxin gene transfer. EMBO J. 21: 4240-4249.
  • Davis B.M. and M.K. Waldor. 2000. CTXΦ contains a hybrid genome derived from tandemly integrated elements. Proc. Natl. Acad. Science USA 97: 8572-8577.
  • Davis B.M., E.H. Lawson, A. Sandkwist, A. Ali, S. Sozhamannan and M.K. Waldor. 2000. Convergence of the secretory pathways for cholera toxin and the filamentous phage, CTXΦ. Science 288: 333-335.
  • Davis B.M. and M.K. Waldor. 2003. Filamentous phages linked to virulence of Vibrio cholerae. Curr. Opin. Microbiol. 6: 35-42.
  • Di Perro M., M.R. Lu, S. Uzzau, W. Wang, S. Margaretten, S., C. Aazzani, F. Maimone and A. Fasano. 2001. Zonula occludens toxin structure-function analysis. Identification of the fragment biologically active on tight junctions and of the zonulin receptor binding domains. J. Biol. Chem. 276: 19160-19165.
  • Heilpern A.J. and M.K. Waldor. 2003. pIIICTX, a predicted CTXΦ minor coat protein, can expand the host range of coliphage fd to include Vibrio choleare. J. Bacteriol. 185: 1037-1044.
  • Huber K.E. and M.K. Waldor. 2002. Filamentous phage integration requires the host recombinases XerC and XerD. Nature 417: 656-659.
  • Jordan P.W., L.A.S. Snyder and N.J. Saunders. 2005. Strain-specific differences in Neisseria gonorrhoeae associated with the phase variable gene repertoire. BMC Microbiol. 5: 21.
  • Kimsey H.H. and M.K. Wal dor. 2004. The CTXΦ repressor RstR binds DNA cooperatively to form tetrameric repressor-operator complexes. J. Biol. Chem. 279: 2640-2647.
  • Klee S.R., X. Nassif, B. Kusecek, P. Merker, J.-L. Berret, M. Achtman, M. and C.R. Tinsley. 2000. Molecular and biological analysis of eight genetic inslands distinguishing Neisseria menigitidis from the closely related pathogen Neisseria gonorrhoeae. Inf. Immun. 68: 2082-2095.
  • Klug A. and J.W. Schwabe. 1995. Protein motifs 5. Zinc fingers. FASEB J. 9: 597-604.
  • Lubkowski J., F. Hennecke, A. Puckthun and A.Wlodawer. 1999. Filamentous phage infectiomcrystal structure of g3p in complex with its coreceptor, the C-terminal domain TolA. Structure 7: 711-722.
  • Marvin D.A. 1998. Filamentous phage structure, infection and assembly. Curr. Opion. Struct. Biol. 8: 150-158.
  • Masignani V., M.M. Giuliani, H. Tettelin, M. Comanducci, R. Rappuoli and V. Scarlato. 2001.Mu-like Prophage in serogroup B Neisseria meningitidis coding for surface-exposed antigens. Infect. Immun. 69: 2580-2588.
  • Mekalanos J.J. 1983. Duplication and amplification of toxin genes in Vibrio cholerae. Cell 35: 253-263.
  • Mc Leod S.M. and M.K. Waldor. 2004. Characterization of XerC- and Xer-D-dependent CTX phage integration in Vibrio cholerae. Mol. Microbiol. 54: 935-947.
  • Model P. and M. Russel. 1988. Filamentous bacteriophage, p. 375-456. In R. Calender (ed.) The Bacteriophages, vol. 2. Plenum Publishing Corporation, New York, N.Y.
  • Morgan G.J., G.F. Hatfull, S. Casjens and R. Hendrix. 2002. Bacteriophage Mu genome sequence: analysis and Comarison with Mu-like prophages in Haemophilus, Neisseria and Deinococcus. J. Mol. Biol. 317: 337-359.
  • Opalka N., R. Beckmann, N. Boisse, M.S. Simon, M. Russel and S. A. Darst. 2003. Structure of the filamentous phage pIV multimer by cryo-electron microscopy. J. Mol. Biol. 325: 461-470.
  • Piekarowicz A., A. Kłyż, A. Kwiatek and D.C. Stein. 2001. Analysis of type I restriction modification systems in the Neisseriaceae: genetic organization and properties of the gene products. Mol. Microbiol. 41: 1199-210.
  • Piekarowicz A., R. Yuan, R. and D.C. Stein. 1991. A new method for the rapid identification of genes encoding restriction and modification enzymes. Nucleic Acids Res. 19: 1831-1835.
  • Russel M. 1995. Moving through the membrane with filamentous phages. Trends Microbiol. 3: 223-228.
  • Russel M., N.A. Linderoth and A. Sali. 1997. Filamentous phage assembly: variation on a protein theme. Gene 192: 23-32.
  • Sambrook J., E.F. Fritsch and T. Maniatis. 1989. Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: ed. Cold Spring Harbor Laboratory, New York.
  • Waldor M.K. and J.J. Makalanos. 1996. Lysogenic conversion by a filamentous bacteriophage encoding cholera toxin. Science 272: 1910-1914.
  • Waldor M.K., E.J. Rubin, G.D. Pearson, H. Kimsey and J.J. Mekalanos. 1997. Regulation, replication and integration of the Vibrio cholerae CTXΦ are encoded by region RS2. Mol. Microbiol. 24: 917-926.
  • Webster R. E. 1994. Filamentous Bacteriophages. In Encyclopedia of Virology, R.G. Webster, A.Granoff (ed.) Academic Press, London, San Diego, New York, Boston,Tokyo, Toronto, pp. 464-469.
  • White L.A. and D.S. Kellogg. 1965. Neisseria gonorrhoeae identification in direct smears by a fluorescent antibody counterstarin method. Appl. Microbiol. 13: 171-174.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-81f3faf9-aa22-4b1d-a1ca-7f5a48c0551b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.