PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 54 | 3 |

Tytuł artykułu

Purification and characterization of two extracellular lipases from Pseudomonas aeruginosa Ps-x

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Two different extracellular lipases were isolated and purified from Pseudomonas aeruginosa Ps-x to apparent homogeneity using ammonium sulfate precipitation followed by ion exchange chromatography on Q- and S-Sepharose column. Both of the purified lipases are monomeric protein with molecular weight of 15.5 and 54.97 KDa respectively. The optimal activities of the enzymes were at 45 and 50°C and pHs 10.0 and 9.0. Calcium ions increase thermostability of both purified lipases I and II. The purified lipase I showed no metal ion dependence for its activity since EDTA up to 10 mM has no effect on the enzyme activity. However purified lipase II showed slight inhibition by EDTA at the same concentration. Moreover, a serine protease inhibitor, PMSF showed an inhibitoiy effect on both purified enzymes.

Wydawca

-

Rocznik

Tom

54

Numer

3

Opis fizyczny

p.233-240,fig.,ref.

Twórcy

autor
  • University of Alexandria, Chatby 21526, Alexandria, Egypt
autor

Bibliografia

  • Brady L., A.M. Brzozowski, Z.S. Derewenda, E. Dodson, G. Dodson, S. Tolley, J.P. Turkenberg, L. Christiansen, B. Hugejensen, L. Norskov, L. Thim and U. Menge. 1990. A serine protease triad forms the catalytic center of a triacylglycerol lipase. Nature 343: 767-770.
  • Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
  • Carriere F., Y. Garguri, H. Moreau, S. Ransac, E. Rogalaska and R. Verger. 1994. Gastric lipases: cellular, biochemical and kinetic aspects, pp. 181-205. In: P. Woolley, S.B. Petersen (eds). Lipases-their structure, biochemistry and application. Cambridge, UK.Cambridge University Press.
  • Dong H., S. Gao, S. Han and S. Cao. 1990. Purification and characterization of a Pseudomonas sp. Lipase and its properties in non-aqueous media. Biotechnol. Appl. Biochem. 30: 251-256.
  • Fox P.F. and L. Stepaniak. 1983. Isolation and some properties of extracellular heat stable lipases from Pseudomonas fluorescens strain AFT 36. J. of Diary Research. 50: 77-89.
  • Gibert E.J., A. Cornish and C.W. Jones. 1991. Purification and properties of extracellular lipase from Pseudomonas aeruginosa EF2. J. General Microbiol. 137: 2223-2229.
  • Jaeger K.E.H., S. Ransac, B.W. Dijkstr, C. Colson, M. van Heuvel and O. Misset. 1994. Bacterial lipases. FEMS Microbiol. Rev. 15: 29-63.
  • Jose M.P., C. Ortiz, M. Fuentes, G. Fernandez, J.M. Guisan and R.F. Lafuente. 2004. Use of immobilized lipases for lipase purification via specific lipase-lipase interaction. J. Chrom. A. 1038: 267-273.
  • Kordel M., B. Hofmann, D. Schomburg and R.D. Schmid. 1991. Extracellular lipase of Pseudomonas sp. strain ATCC21808: purification, characterization, crystallization, and preliminary X-ray diffraction data. J. Bacteriol. 173: 4836-4841.
  • Kasumi T., K. Hayashai and N. Tsumura. 1982. Roles of magnesium and cobalt in the reaction of glucose isomerase from Streptomyces griseofuscus S-41. Agric. Biol. Chem. 9: 21-30.
  • Kyu R.K., D.Y Kwon, S.H. Yoon, W.Y. Kim and K.H. Kim. 2005. Purification, refolding and characterization of recombinant Pseudomonas fluorescens lipase. Protein Expression and Purification. 39: 124-129.
  • Lambit K. and P. Goswami. 2002. Isolation of a Pseudomonas lipase produced in pure hydrocarbon substrate and its application in the synthesis of isoamyl acetate using membrane immobilized lipase. Enz. Microb. Tech. 31: 727-735.
  • Laemml i U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680.
  • Lee Y.P., G.H. Chung and J.S. Rhee. 1993. Purification and characterization of Pseudomonas fluorescens SIK Wl lipase expressed in E. coli. Biochem. Biophys. Acta 1169: 156-164.
  • Lee S.Y. and J.S. Rhee. 1993. Production and partial purification of lipase from Pseudomonas putida 3SK. Enz. Microb. Tech. 15: 617-623.
  • Margolin A.L. and A.M. Klibanov. 1987. Peptide synthesis catalyzed by lipases in anhydrous organic solvents. J. Am. Chem. Soc. 109: 3802^4.
  • Maliszewska I. and M. Przemyslaw. 1992. Production and some properties of lipase from Penicillium citrinum. Enz. Micrb. Tech.. 14: 190-193.
  • Mohamed K., P. Van Gelder, W. Bitter and J. Tommassen. 2003. Role of the calcium ion and the disulfide bond in the Burkholderia glumae lipase. J. Mol. Cat. B: Enzymatic 22: 329-338.
  • Mencher J.R. and J.A. Alford. 1967. Purification and characterization of the lipase of Pseudomonas fragi. J. Gen. Microbiol. 48: 317-328.
  • Sambrook J., E.F. Fritsch and T. Maniatis. Molecular cloning. A laboratory Manual. Cold Spring Harbor Laboratory, NY. 1989.
  • Sanger F., S. Nicklen and A.R. Coulson. 1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA. 74: 5463-5467.
  • Stuer W., K.E. Jaeger and U.K. Winkler. 1986. Purification of extracellular lipase from Pseudomonas aeruginosa. J. Bacteriol. 168: 1070-1074.
  • Schrag J.D., L. Yunge, W. Shang and C. Miroslaw. 1991. Ser-His-Glu triad forms the catalytic site of the lipase from Geotrichum candidum. Nature 351: 761-764.
  • Svendsen A., K. Borch, M. Barfoed, T.B. Nielsen, E. Gormsen and S.A. Patkar. 1995. Biochemical properties of cloned lipases form Pseudomonas family. Biochem. Biophys. Acta 1259: 9-17.
  • Sugiura M., T. Oikawa, K. Hirano and T. Inukai. 1977. Purification, crystallization, and properties of triacylglycerol lipase from Pseudomonas fluorescens. Biochim. Biophys. Acta 488: 353-358.
  • Teplyakov A.V., LP. Kuranova, E.H. Harutyunyan, B.K. Vainshtein, C. From m el, W.E. Hohne and K.S. Wilson. 1990. Crystal structure of thermitase at 1.4 A resolution. J. Mol. Biol: 214: 261-279.
  • Umesh K., A.U. Jinwal, R. Roy, C. Abhijit, A. Chowdhury, A.P. Bhaduric and P.K. Roy. 2003. Purification and characterization of an alkaline lipase from a newly isolated Pseudomonas mendocina PK-12CS and chemoselective hydrolysis of fatty acid esters. Bioorg. Med. Chem. 11: 1041-1046.
  • van Oort M.G., A.M. Deveer, R. Dijkman, M.L. Tjeenk, H.M. Verheij, G.H. de Haas, E. Wenzig and F. Götz. 1989. Purification and substrate specificity of Staphylococcus hyicus lipase. Biochemistry 28: 9278-9285.
  • Whitlow M., A.J. Howard, B.C. Finzel, T.L. Poulos, E. Winborne and G.L. Gilliland. 1991. A metal-mediated hydride shift mechanism for xylose isomerase based on the 1.6 A Streptomyces rubiginosus structures with xylitol and D-xylose. Proteins 9: 153-173.
  • Williams CM., C.S. Richter, J.M. Mackenzie and J.C.H. Shih. 1990. Isolation, identification, and characterization of a feather-degrading bacterium. J. App. Environ. Microbiol. 56: 1509-1515.
  • Yamamoto K. and N. Fujiwara. 1988. Purification and some properties of a castor-oil hydrolyzing lipase from Pseudomonas sp. Agri. Biological. Chem. 52: 3015-3021.
  • Yong S.L. and J.S. Rhee. 1993. Production and partial purification of a lipase from Pseudomonas putida 3SK. Enz. Microb. Technol. 15: 617-623.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-81b91330-2fb7-4580-a6e1-e7c20b302386
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.