PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2001 | 54 | 1 |

Tytuł artykułu

Use of Pseudomonas aeruginosa in the control of root-knot disease complex in tomato: the effects of different inoculum levels of Meloidogyne javanica and Rhizoctonia solani

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The potential impact of Pseudomons aeruginosa strain IE-6 as abiological control agent against Meloidogyne javanica at four inoculum densities (0, 250, 500 and 1000 eggs/plant) and Rhizoctonia solani at three inoculum levels (0, 1 and 3 mi culture suspension/kg of soil) was examined on tomato in the greenhouse experiments. The biocontrol bacterium suppressed root infection caused by R. solani and M. javanica on tomato in both sterilized and non-sterilized soils. Root-rot infection increased with the increase in pathogen(s) concentration. P. aeruginosa showed better biocontrol effects at low population levels of M.javanica and R. solani than at higher population densities of the pathogen(s). Root-rot disease severity was more pronounced in sterilized soil compared to the non-sterilized one. Soil infested with high population densities of R. solani (3 mi /kg of soil) and M. javanica (2000 eggs/pot) resulted in complete mortality of tomato seedlings in sterilized soil, whereas some plants were found to survive in non-sterilized soil. There seems to be a correlation between population density of M. javanica and root colonization by R. solani. Root colonization by other three root-infecting fungi inc1uding Macrophomina phaseolina, Fusarium oxysporum and Fusarium solani was also lower in the presence of P. aeruginosa in non-sterilized soil. P. aeruginosa enhanced plant growth in both types of soil.
PL
Badano skuteczność 3 szczepów P. aeruginosa biologicznym zwalczaniu zgnilizny korzeni powodowanym przez Macrophomina phaseolina, Fusarium solani i Rhizoctonia solani oraz guzowatości korzeni przez nicienia M. javanica na roślinach chili i V. mungo w warunkach szklarniowych. Wszystkie trzy szczepy istotnie redukowały populację nicienia w glebie, jego inwazyjność, rozmnażanie i tworzenie guzów. Infekcja korzeni przez grzyby była także skutecznie ograniczana przez użycie P. aeruginosa. Antagonistyczne bakterie wykazywały większą skuteczność w biologicznym zwalczaniu chorób oraz korzystne oddziaływanie w przypadku roślin 15 dniowych niż zbieranych po 30 i 45 dniach. Populacja bakterii w ryzosferze zmniejszała się gwałtownie po 15 dniach po inokulacji nicieni. Bakteria Pseudomonas aeruginosa szczep Pa-5 wykazywała maksymalną nodulację w przypadku roślin 15 dniowych, a szczep Pa-7 - w przypadku 30 i 45 dniowych roślin V. mungo.

Wydawca

-

Czasopismo

Rocznik

Tom

54

Numer

1

Opis fizyczny

p.45-54,fig.

Twórcy

autor
  • PAF Intermediate College Korangi-Creek, Karachi-75190, Pakistan
autor

Bibliografia

  • Booth C., Stover R.H. 1974. Cylindrocarpon musae sp. Nov., commonly associated with burrowing nematodes (Rhadopholus similes) lesion on bananas. Trans. Brit. Mycol. Soc., 63: 503-507.
  • Chahal P.P.K., Chahbra H.K. 1984. Interaction of Meloidogyne incognita with Rhizoctonia solarn on tomato. Ind. J. Nematol., 14: 56-57.
  • Downing K.J., Thomson J. A. 2000. Introduction of the Serratia marcescens chiA gene into an endophytic Pseudomonas fluorescein for the biocontrol of phytopathogenic fungi. Can. J. Microbiol., 46: 363-369.
  • Ghaffar A. 1988. Soilbome Diseases Research Center. Final research report, Department of Botany, University of Karachi, Karachi-75270, Pakistan.
  • Golden J.K., Van Gundy S.D. 1975. A disease complex of okra and tomato involving the nematode, Meloidogyne incognita, and the soil-inhabiting fungus, Rhizoctonia solani. Phytopathology, 65: 265-273.
  • Hasan A., Khan M.N. 1985. The effect of Rhizoctonia solani, Sclerotium rolfsii and Verticillium dahliae on the resistance of tomato to Meloidogyne incognita. Nematol. Medit., 13: 133-136.
  • Inagaki H., Powell N.T. 1969. Influence of root-lesion nematode on black shank symptom development in flue-cured tobacco. Phytopathology, 59: 1350-1355.
  • Khan M.W. 1993. Mechanisms of interactions between nematodes and other plant pathogens. Pp. 54-78. In: Nematode Interactions. Khan, M.W. (ed). Chapman & Hall, India.
  • Khan M.W., Müller J. 1982. Interaction between Rhizoctonia solani and Meloidogyne hapla on radish in gnotobiotic culture. Lib. J. Agric., 11: 133-140.
  • Nash S.M., Snyder W.C. 1962. Quantitative estimations by plate counts of propagules of the bean root rot Fusarium in field soils. Phytopathology, 52: 567-572.
  • Oostendorp M., Sikora R.A. 1989. Seed-treatment with antagonistic rhizobacteria for the suppression of Heterodera schachtii early root infection of sugar beet. Revue Nematol., 12:77-83.
  • Oyarzum P.J., Postma J., Luttikholt A.J.G., Hoogland A.E. 1994. Biological control of foot and root rot in pea caused by Fusarium solani with non-pathogenic Fusarium oxysporum isolates. Can. J. Bot., 72: 843-852.
  • Parmeter J.R. jr. 1970. Rhizoctonia solani, Biology and Pathology, pp. 255. University of California Press, Berkely, Los Angeles and London.
  • Pleban S., Ingel F., Chet I. 1995. Control of Rhizoctonia solani and Sclerotium rolfsii in greenhouse using endophytic Bacillus spp. Europ. J. Plant Pathol., 101: 665-672.
  • Polychronopoulos A.G., Houston B.R., Lownsbery B.F. 1969. Penetration and development of Rhizoctonia solani in sugar beet seedlings infected with Heterodera schachtii. Phytopathology, 59: 482-485.
  • Reynolds H.W., Hansen R.S. 1957. Rhizoctonia disease of cotton in presence or absence of the cotton root knot nematode in Arizona. Phytopathology, 47: 256-261.
  • Sabet K.A., Khan I.D. 1969. Competitive saprophytic ability and inoculum potential of cotton root infecting fungi in five soils. Cotton Grow. Rev., 46: 119-133.
  • Sharma V.K., Nowak J. 1998. Enhancement of the Verticillium wilt resistance in tomato transplant by in vitro co-culture of seedlings with a plant growth promoting rhizobacterium (Pseudomonas sp., PsJN). Can. J. Microbiol., 44: 528-536.
  • Sheikh A.H., Ghaffar A. 1975. Population study of sclerotia of Macrophomina pliaseolina in cotton fields. Pak. J. Bot., 7: 13-17.
  • Siddiqui I.A., Ehteshamul-Haque S., Ghaffar A. 1999 Root dip treatment with Pseudomonas aeruginosa and Trichoderma spp., in the control of root rot-root knot disease complex in chilli (Capsicum annuum L.). Pak. J. Nematol., 17: 67-75.
  • Siddiqui I.A., Qureshi S.A., Sultana V., Ehteshamul-Haque S., Ghaffar A. 2000. Biological control of root rot-root knot disease complex of tomato. Plant Soil, 227: 163-169.
  • Siddiqui I.A., Ehteshamul-Haque S. 2000. Use of Pseudomonas aeruginosa for the control of root rot-root knot disease complex in tomato. Nematol. Medit., 28: 189-192.
  • Sneh B., Humble S.J., Lockwood J.L. 1977. Parasitism of oospores of Phytophthora megasperma var. sojae, P. cactorum, Pythium sp., and Aphanomyces euteiches in soil by oomycetes, chytridiomycetes, hyphomycetes, actinomycetes and bacteria. Phytopathology, 67: 622-628.
  • Van Gundy S.D., Kirkpatrik J.D., Golden J. 1977. The nature and role of metabolic leakage from root-knot nematode galls and infection by Rhizoctonia solani. J. Nematol., 9: 113-121.
  • Wilhelm S. 1955. Longevity of the Verticillium wilt fungus in the laboratory and field. Phytopathology, 45: 180-181.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-814aba8f-1586-4149-aa5a-28b21f4d142c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.