PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 17 | 4 |

Tytuł artykułu

Biodegradation of carbendazim by planktonic and benthic bacteria of eutrophic lake Chelmzynskie

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study evaluates the biodegradation of carbendazim (1 mg/l) by homogeneous cultures of planktonic (N=25) and benthic (N=25) bacteria as well as by heterogeneous cultures (N=1) containing a mixture of 25 bacterial strains. The bacteria were collected from a 25 cm subsurface water layer and a 5-10 cm surface layer of bottom sediments of lake Chełmżyńskie. Results indicate that bacterioplankton are better able to decompose carbendazim than benthic bacteria (p<0.05). In the case of decomposition by planktonic bacteria, the mean half-life of carbendazim equaled 40 days. Benthic bacteria, on average, required 60 days to reduce the concentration of fungicide by 37%. The level of biodegradation of carbendazim in mixed cultures of benthic and planktonic bacteria after a 20-day incubation period was lower than the average value of its biodegradation in homogeneous cultures. Forty- and 60-day homogeneous cultures of planktonic bacteria were characterized by a higher mean level of carbendazim biodegradation than that of the mixed culture. Decomposition of the fungicide in 40- and 60-day mixed cultures of benthic bacteria was higher than the mean value of biodegradation of this compound in homogeneous cultures. We demonstrated that among planktonic bacteria, the species Sphingomonas paucimobilis, Aeromonas hydrophila, and Pseudomonas fluorescens were the most efficient in reducing the concentration of carbendazim, while among benthic bacteria, Burkholderia cepacia and two unidentified strains of bacillus were the most efficient.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

17

Numer

4

Opis fizyczny

p.515-523,ref.

Twórcy

  • Nicolaus Copernicus University, Gagarina 9, 87-100 Torun, Poland
autor
autor

Bibliografia

  • 1. AQUARELLA J., DOES J., TOMENSON J., CHESTER G., COWELL J., BLOEMEN L. Epidemiologic studies of occupational pesticide exposure and cancer: regulatory risk assessments and biologic plausibility, Annals Epidemiol. 13 (1), 1, 2003.
  • 2. CROSS P., JONES G.-E. variation in pesticide hazard from arable crop production in Great Bitain from 1992-2002: pesticide risk indices and policy analysis, Crop Protect. 25 (10), 1101, 2006.
  • 3. BOLONGESI C. Genotoxitcity of pesticides: a review of human biomonitoring studies, Mut. Res./Rev. Mut. Res. 534 (3) 251, 2003.
  • 4. MONTGOMERY H.J. Benomyl. In: Agrochemicals Desk Reference, 2nd edn., New York, Lewis Publishers, ISBN:1, 56670, 168, 1997.
  • 5. MAZELLIER P., LEROY E., LEGUBE B. Photochemical behavior of fungicide carbendazim in dilute aqueous solutions, J. Photochem. Photobiol. A: Chemistry 153, 221, 2002.
  • 6. Carbendazim. In: Pesticide News, 57, 20, 2002.
  • 7. http://www.zch.sarzyna.pl/firma/index.html, viewing date: March 01. 2007.
  • 8. CHIBA M., VERES D.F. HPLC method for simultaneous determination of residual benomyl and methyl-2-benzimidazole carbamate in apple foliage without cleanup, J. Assoc. Off. Anal. Chem., 63, 1291, 1980.
  • 9. KIJEMAGI U., INMAN U., MELLENTHIN W.M., DEINZER M.L. Residues of benomyl (determined as carbendazim) and captan in post harvest – treated pears in cold storage, J. Agric. Food Chem., 39, 400, 1991.
  • 10. PERREAULT D.S., JEFFAY S., POSS P., LASKEY J.W. Use of the fungicide carbendazim as a model compound to determine the impact of acute chemical exposure during oocyte maturation and fertilization on pregnancy outcome in the hamster, Toxicol. Appl. Pharmacol., 114, 225, 1992.
  • 11. SARRIF A.M., ARCE G.T., KRAHN D.F., O,NEIL R.M., REYNOLDS V.L. Evaluation of carbendazim in the presence of some normal soil constituents with photodiode-array detection, J. Chromatogr., 538, 480, 1994.
  • 12. NAKAI B.M., MOORE B.J., HESS R.A. Epithelial reorganization and irregular growth following carbendazim – induced injury of the efferent ductales of the rat testis, Anat. Rec., 235, 51, 1993.
  • 13. DAUBNER I. Water microbiology, Slov. Akad. Vied., Bratislava, 1967.
  • 14. FERRER E.B., STAPERT E.M., SOKOLSKI W.T. A medium for improved recovery of bacteria from water, Can. J. Microbiol., 9, 420, 1963.
  • 15. ZIPPER CH., NICKEL K., ANGST W., KOHLER H.P. Complete microbial degradation of both enantiomers of the chiral herbicide mecoprop [(RS)-2-(chloro-2-methylphenoxy) propionic acid] in an Enantioselective Manner by Sphingomonas herbicidovorans sp. nov., Appl. Environ. Microb., 12, 4318, 1996.
  • 16. WARREN N., ALLAN I.J., CARTER J.E., HOUSE W.A., PARKER A. Pesticides and other micro-organic contaminants in freshwater sedimentary environments-a review., Appl. Geochem., 18, 159, 2003.
  • 17. WHO, Environment Health Criteria 149: Carbendazim, Geneva: World Health Organization, (http://www.inchem.org/documents/ehc/ehc/ehc149.htm, viewing date: March 01.2007) 1993.
  • 18. HELWEG A. Degradation and adsorption of carbendazim and 2-aminobenzimidazole in soil, Pestic Sci., 8, 71, 1977.
  • 19. YARDEN O., SALOMON R., KATAN J., AHARONSON N. Involvement of fungi and bacteria in enhanced and non enhanced biodegradation of carbendazim and other benzimidazole compounds in soil, Canadian J. Microbiol., 36, 15, 1990.
  • 20. AHARONSON N., KATAN J. Delayed and enhanced biodegradation of soil-applied diphenamid, carbendazim, and aldicarb, Arch. Insect Biochem. Physiol., 22, 451, 1993.
  • 21. CUPPEN J.G.M., BRINK P.J. van der, CAMPS E., UIL K.F., BROCK T.C.M. Impact of the fungicide carbendazim in freshwater microcosms. I. Water quality, breakdown of particulate organic matter and responses of macroinvertebrates, Aquat. Toxicol., 48, 233, 2000.
  • 22. STRZELCZYK E., MIELCZAREK A. Comparative studies on metabolic activity of planktonic, benthic and epiphytic bacteria, Hydrobiol., 38, 67, 1971.
  • 23. DONDERSKI W., SYRZELCZYK E. The ecology and physiology of aerobic heterotrophic bacteria in lakes of different trophy. In: Some Ecological Biological Systems in North Poland, Ed. Bohr R., Nienartowicz A., Wilkoń-Michalska J., N. Copernicus University Press, Toruń, 1992.
  • 24. MUDRYK Z. Heterotrophic bacteria in the processes of transformation of organic matter in estuary lakes, Rozprawy, WSP, Słupsk, 1994.
  • 25. FISCHER H., WANNER S.C., PUSCH M. Bacterial abundance and production in river sediments as related to the biochemical composition of particulate organic matter (POM), Biogeochem. 61, 37, 2002.
  • 26. HAGLUND A.L., LANTZ P., TÖRNBLOM E., TRANVIK L. Depth distribution of active bacteria and bacterial activity in lake sediment, FEMS Microb. Ecol., 46, 31, 2003.
  • 27. NIEWOLAK S. Seasonal changes of the heterotrophic microflora of the Iława lakes bottom sediments. Pol. Arch. Hydrobiol., 3, 211, 1968.
  • 28. KALWASIŃSKA A., DONDERSKI W. Benthic bacteria of Chełmżyńskie Lake (Poland), Polish J. Environ. Stud., 14(6), 761, 2005.
  • 29. MISKIN I., RHODES G., LAWLOR K., SAUNDERS J.R., PICKUP R.W. Bacteria in post-glacial freshwater sediments, Microbiol. 144, 2427, 1998.
  • 30. PARKES R.J., CRAGG B.A., BALE S.J., GETLIFF J.M., GOODMAN K., ROCHELLE P.A., FRY J.C., WEIGHTMAN A.J., HARVEY S.M. Deep bacterial biosphere in Pacific Ocean sediments, Nature, 371, 410, 1994.
  • 31. WILLIAMS S.T., VICKERS J.C. The ecology of antibiotic production, Microbiol. Ecol., 12, 43, 1986.
  • 32. STRZELCZYK E., STOPIŃSKI M., MYZYK G. Studies on metabolic activity of single and mixed cultures of planktonic and benthic bacteria of two lakes of different trophy, AUNC Toruń, Limnol. Papers, 16, 3, 1988.
  • 33. LEMOS M.L., DOPAZO C.P., TORANZO A.E., BARJA J.L. Competitive dominance of antibiotic-producing marine bacteria in mixed cultures, J. Appl. Bacteriol., 71, 228, 1991.
  • 34. CHODYNIECKI A. Antibiosis and symbiosis among freshwater bacteria, Szczecin, 1968.
  • 35. FUCHS A., VRIES F.W. de, Bacterial breakdown of benomyl. I. Pure cultures, Antonie van Leeuwenhoek, 44, 283, 1978.
  • 36. HOLTMAN M.A., KOBAYASHI D.Y. Identification of Rhodococcus erythropolis isolates capable of degrading the fungicide carbendazim, Appl. Microbiol. Biotechnol., 47, 578, 1997.
  • 37. ZHANG G.SH., JIA X.M., CHENG T.F., MA X.H., ZHAO Y.H. Isolation and characterization of new carbendazim – degrading Ralstonia sp. strain, World J. Microb. Biotechnol., 21, 256, 2005.
  • 38. PATTANASUPONG A., NAGASE H., INOUE M., HIRATA K., TANI K., NASU M., IYAMOTO K. Ability of a microbial consortium to remove pesticide, carbendazim and 2,4-dichlorophenoxyacetic acid, World J. Microbiol. Biotechnol., 20, 517, 2004.
  • 39. PAL R., BALA SH., DADHWAL M., KUMAR M., DHINGRA G., PRAKASH O., PPRABTGARAN S.R., SHIVASI S., CULLUM J., HOLLIER CH., LAL R. Hexachlorocyclohexane – degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp+, having similar genes, represent three distinct species, Sphingobium indicum sp., nov., Sphingobium japonicum sp., nov., and Sphingobium francense sp. nov., and reclassification of [Sphingomonas] chungbukensis as Sphingobium chungbukense comb. nov., Int. J. Evol. Microbiol., 55(5), 1965, 2005.
  • 40. TANGAROMSUK J., POKETHITIYOOK P., KRUATRACHUE M., UPATHAM E.S. Cadmium biosorption by Sphingomonas paucimobilis biomass, Biosource Technol., 85(1), 103, 2002.
  • 41. NISHIKAWA S., SONOKI T., KASAHARA T., OBI T., KUBOTA S., KAWAI S., MOROHOSHI N., KATAYAMA Y. Cloning and sequencing of the Sphingomonas (Pseudmonas) paucimobilis gene essential for o-demethylation of vanillate and syringate, Appl. Environ. Microbiol., 63(3), 836, 1998.
  • 42. SZEWCZYK U., SZEWCZYK R., MANZ W., SCHLEIFER K.H. Microbial safety of drinking water, Annu. Rev. Microbiol., 54, 81, 2000.
  • 43. PEMBERTON J.M., KIDD S.P., SCHMIDT R. Secreted enzymes of Aeromonas, FEMS Microbiol. Lett., 152, 1, 1997.
  • 44. DILEK F.B., ANDERSON G.K., BLOOR J. Investigation into the microbiology of the rate jet-loop activated sludge reactor treating brewery wastewater, Wat. Sci. Tech., 43(5-6), 107, 1996.
  • 45. CHEN K.-H., WU J.-Y., LIOU D.-J., HWANG SZ.-CH. J. Decolorization of the textile dyes by newly isolated bacterial strains. J. Biotechnol., 101(1), 57, 2003.
  • 46. BARATHI S., VASUDEVAN N., Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from a petroleum – contaminated soil., Environ. Int., 26, 413, 2001.
  • 47. SOROKA Y.M., SAMOILENKO L.S., GVOZDYAK P.I. Strains of Pseudomonas fluorescens 3 and Atrhrobacter sp. 2 degrading polycyclic aromatic hydrocarbons. Microbiol. Zh., 63, 65, 2001.
  • 48. JUNG K.-J., KIM E., SO J.-S., KOH S.-CH. Specific biodegradation of polychlorinated biphenyls (PCBs) facilitated by plant terpenoids, Biotechnol. Bioproc. Eng., 6, 61, 2001.
  • 49. DAUBRAS D.L., DANGANAN C.E., HŰBNER A., YE R.W., HENDRICKSON W., CHAKRABARTY A.M. biodegradation of 2,4,5-trichlorophenoxyacetoc acid by Burkholderia cepacia strain AC1100: evolutionary insight, Gene, 179(1), 1, 1996.
  • 50. JUHASZ A.L., BRITZ M.L., STANLEY G.A., Degradation of benso(a)pyrene, dibenz(a,h)anthracene and coronene by Burkholderia cepacia, Wat. Sci. Tech., 36(10), 45, 1997.
  • 51. BHUSHAN B., CHAUHAN A., SAMANTA S.K., JAIN R.K. Kinetics of biodegradation of p-nitrophenol by different bacteria, Bioch. Biophis. Res. Communic., 274, 626, 2000.
  • 52. KIM T.J., LEE E.Y., KIM Y.J., CHO K.-S., RYU H.W. Degradation of polyaromatic hydrocarbons by Burkholderia cepacia 2A-12, World J. Microb. Biot., 19(4), 411, 2003.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-80873165-b9a8-49d5-abb3-a06c56c64484
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.