PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 19 | 4 |

Tytuł artykułu

Mechanisms for the generation of reactive oxygen species in plant defence response

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Recent data indicate that plants, in a manner similar to the situation found in mammalian phagocytotic cells, produce reactive oxygen species (ROS) in response to pathogen infection. This reaction could be very quick when using pre-existing, usually exocellular, components and/or, when biochemical machinery of the cell is activated, relatively late and long-lasting. The oxidative burst is defined as a rapid, transient production of high levels of ROS in response to external stimuli. Two major models depicting the origin of ROS in the oxidative burst are described, namely: the NADPH oxidase system and the pH-dependent generation of hydrogen peroxide by exocellular peroxidases. Additionally, the participation of exocellular ROS-generating enzymes, like germin-like oxalate oxidases and amine oxidases, in plant defence response is demonstrated. The involvement of protoplasmic ROS-generating systems is also indicated.

Wydawca

-

Rocznik

Tom

19

Numer

4

Opis fizyczny

p.581-589

Twórcy

autor
  • Polish Academy of Sciences, Noskowskiego 12-14, 61-704 Poznan, Poland

Bibliografia

  • Anderson A.J., Rogers K., Tepper C.S., Blee K., Cardon J. 1991. Timing of molecular events following elicitor treatment of plant cells. Physiol. Mol. Plant Pathol., 38: 1–13.
  • Angelini R., Bragaloni M., Federico R., Infantino A., Portapuglia A. 1993. Involvement of polyamines, diamine oxidase and peroxidase in resistance of chickpea to Ascochyta rabiei. J. Plant Physiol., 142: 704–709.
  • Angelini R., Federico R., Bonfante P. 1995. Maize polyamine oxidase — antibody production and ultrastructural localization. J. Plant Physiol., 145: 688–692.
  • Angelini R., Manes F., Federico R. 1990. Spatial and functional correlation between diamine oxidase and peroxidase activities and their dependence upon de-etiolation and wounding in chick-pea stems. Planta, 182: 89–96.
  • Atkinson M.M. 1993. Molecular mechanisms of pathogen recognition by plants. Adv. Plant Pathol., 10: 35–64.
  • Baker C.J., Orlandi E.W. 1995. Active oxygen in plant pathogenesis. Annu. Rev. Phytopathol., 33: 299–321.
  • Bartosz G. 1995. Druga Twarz Tlenu. Wydawnictwo Naukowe PWN, Warszawa.
  • Berna A., Bernier F. 1997. Regulated expression of a wheat germin gene in tobacco: oxalate oxidase activity and apoplastic localization of the heterologous protein. Plant Mol. Biol., 33: 417–429.
  • Bestwick C.S., Brown I.R., Bennett M.H.R., Mansfield J.W. 1997. Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv. phaseolicola. Plant Cell, 9: 209–221.
  • Bolwell G.P. 1993. Dynamic aspects of plant extracellular matrix. Int. Rev. Cytol., 146: 261–324.
  • Bolwell G.P. 1996. The origin of the oxidative burst in plants. Biochem. Soc. Trans., 24: 438–442.
  • Bolwell G.P., Wojtaszek P. 1997. Mechanisms for the generation of reactive oxygen species in plant defence — a broad perspective. Physiol. Mol. Plant Pathol., in press.
  • Bolwell G.P., Butt V.S., Davies D.R., Zimmerlin A. 1995. The origin of the oxidative burst in plants. Free Rad. Res., 23: 517–532.
  • Chivasa S., Murphy A.M., Naylor M., Carr J.P. 1997. Salicylic acid interferes with tobacco mosaic virus replication via a novel salicylhydroxamic acid-sensitive mechanism. Plant Cell, 9: 547–557.
  • Dangl J.L., Dietrich R.A., Richberg M.H. 1996. Death don’t have no mercy: cell death programs in plant-microbe interactions. Plant Cell, 8: 1793–1807.
  • Desikan R., Hancock J.T., Coffey M.J., Neill S.J. 1996. Generation of active oxygen in elicited cells of Arabidopsis thaliana is mediated by a NADPH oxidase-like enzyme. FEBS Lett., 382: 213–217.
  • Doke N. 1983. Involvement of superoxide anion generation in hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans. Physiol. Plant Pathol., 23: 345–357.
  • Domon J.M., Dumas B., Laine E., Meyer Y., David A., David H. 1995. Three glycosylated polypeptides secreted by several embryogenic cell cultures of pine show highly specific serological affinity to antibodies directed against the wheat germin apoprotein monomer. Plant Physiol., 108: 141–148.
  • Dumas B., Freyssinet G., Pallett K.E. 1995. Tissue-specific expression of germin-like oxalate oxidase during developmental and fungal infection of barley seedlings. Plant Physiol., 107: 1091–1096.
  • Dumas B., Sailland A., Cheviet J.-P., Freyssinet G., Pallett K.E. 1993. Identification of barley oxalate oxidase as a germin-like protein. C. R. Acad. Sci. Paris — Sciences de la Vie, 316: 793–798.
  • Dwyer S.C., Legendre L., Low P.S., Leto T.L. 1996. Plant and human neutrophil oxidative burst contain immunologically related proteins. Biochim. Biophys. Acta, 1289: 231–237.
  • Elstner E.F., Heupel A. 1976. Formation of hydrogen peroxide by isolated cell walls from horseradish (Armoracia lapathifolia). Planta, 130: 175–180.
  • Federico R., Angelini R. 1986. Occurrence of diamine oxidase in the apoplast of pea epicotyls. Planta, 167: 300–302.
  • Federico R., Angelini R. 1988. Distribution of polyamines and their related catabolic enzyme in etiolated and light-grown leguminosae seedlings. Planta, 173: 317–321.
  • Glazener J.A., Orlandi E.W., Baker J.C. 1996. The active oxygen response of cell suspensions to incompatible bacteria is not sufficient to cause hypersensitive cell death. Plant Physiol., 110: 759–763.
  • Groom Q.J., Torres M.A., Fordham-Skelton A.P., Hammond-Kosack K.E., Robinson N.J., Jones J.D.G. 1996. rbohA, a rice homologue of the mammalian gp91phox respiratory burst oxidase gene. Plant J., 10: 515–522.
  • Gross G.G., Janse C., Elstner E.F. 1977. Involvement of malate, monophenols and the superoxide radical in hydrogen peroxide formation by isolated cell walls from horseradish (Armoracia lapathifolia). Planta, 136: 271–276.
  • Halliwell B. 1978. Lignin synthesis: The generation of hydrogen peroxide and superoxide by horseradish peroxidase and its stimulation by manganese (II) and phenols. Planta, 140: 81–88.
  • Heintzen C., Fischer R. Melzer S., Kappeler S., Apel K., Staiger D. 1994. Circadian oscillations of a transcript encoding a germin-like protein that is associated with cell walls in young leaves of the long-day plant Sinapis alba L. Plant Physiol., 106: 905–915.
  • Hurkman W.J., Tanaka C.K. 1996. Germin gene expression is induced in wheat leaves by powdery mildew infection. Plant Physiol., 111: 735–739.
  • Jabs T., Dietrich R.A., Dangl J.L. 1996. Extracellular superoxide initiates runaway cell death in an Arabidopsis mutant. Science, 273: 1853–1856.
  • Jacks T.J., Davidonis G.H. 1996. Superoxide, hydrogen peroxide, and the respiratory burst of fungally infected plant cells. Mol. Cell. Biochem., 158: 77–79.
  • Kieffer F., Simon-Plas F., Maume B.F., Blein J.-P. 1997. Tobacco cells contain a protein, immunologically related to the neutrophil small G protein Rac2 and involved in elicitor-induced oxidative burst. FEBS Lett., 403: 149–153.
  • Kombrink E., Somssich I.E. 1995. Defense responses of plants to pathogens. Adv. Bot. Res., 21: 1–34.
  • Lamb C, Dixon R.A. 1997. The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol., 48: 251–275.
  • Lane B.G. 1994. Oxalate, germin, and the extracellular matrix of higher plants. FASEB J., 8: 294–301.
  • Lane B.G., Dunwell J.M., Ray J.A., Schmitt M.R., Cuming A.C. 1993. Germin, a protein marker of early plant development, is an oxalate oxidase. J. Biol. Chem., 268: 12239–12242.
  • Low P.S., Merida J.R. 1996. The oxidative burst in plant defense. Function and signal transduction. Physiol. Plant., 96: 533–542.
  • Medda R., Padiglia A., Pedersen J.Z., Lorrai A., Floris G. 1996. Substrate specificity of lentil seedling amine oxidase. Biochem. Mol. Biol. Int., 40: 629–637.
  • Mehdy M.C. 1994. Active oxygen species in plant defense against pathogens. Plant Physiol., 105: 467–472.
  • Michalowski C.B., Bohnert H.J. 1992. Nucleotide sequence of a root-specific transcript encoding a germin-like protein from the halophyte Mesembryanthemum crystallinum. Plant Physiol., 100: 537–538.
  • Olson P.D., Varner J.E. 1993. Hydrogen peroxide and lignification. Plant J., 4: 887–892.
  • Peng M., Kuc J. 1992. Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks. Phytopathology, 82: 696–699.
  • Pichorner H., Couperus A., Korori S.A.A., Ebermann R. 1992. Plant peroxidase has a thiol oxidase function. Phytochemistry, 31: 3371–3376.
  • Robertson D., Davies D.R., Gerrish C., Jupe S.J., Bolwell G.P. 1995. Rapid changes in oxidative metabolism as a consequence of elicitor treatment of suspension-cultured cell of French bean (Phaseolus vulgaris L.). Plant Mol. Biol., 27: 59–67.
  • Ryals J., Uknes S., Ward E. 1994. Systemic acquired resistance. Plant Physiol., 104: 1109–1112.
  • Segal A.W., Abo A. 1993. The biochemical basis of the NADPH oxidase of phagocytes. Trends Biochem. Sci., 18: 43–47.
  • Shatwell K.P., Segal A.W. 1996. NADPH oxidase. Int. J. Biochem. Cell Biol., 28: 1191–1195.
  • Smith T.A. 1985. The di- and poly-amine oxidases of higher plants. Biochem Soc. Transact., 13: 319–322.
  • Staskawicz B.J., Ausubel F.M., Baker B.J., Ellis J.G., Jones J.D.G. 1995. Molecular genetics of plant disease resistance. Science, 268: 661–667.
  • Sutherland M.W. 1991. The generation of oxygen radicals during host plant responses to infection. Physiol. Mol. Plant Pathol., 39: 79–93.
  • Tenhaken R., Levine A., Brisson L.F., Dixon R.A., Lamb C.J. 1995. Function of the oxidative burst in hypersensitive disease resistance. Proc. Natl. Acad. Sci. USA, 92: 4158–4163.
  • Thompson C., Dunwell J.M., Johnstone C.E., Lay V., Ray J., Schmitt M., Watson H., Nisbet G. 1995. Degradation of oxalic acid by transgenic oilseed rape plants expressing oxalate oxidase activity. Euphytica, 85: 169–172.
  • Thordal-Christensen H., Zhang Z., Wei Y., Collinge D.B. 1997. Subcellular localisation of H₂O₂ in plants. H₂O₂ accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J., 11: 1187–1194.
  • Wojtaszek P. 1997. Oxidative burst: an early plant response to pathogen infection. Biochem. J., 322: 681–692.
  • Wojtaszek P., Stobiecki M., Bolwell G.P. 1997. Changes in the composition of exocellular proteins of suspension-cultured Lupinus albus cells in response to fungal elicitors or CuCl₂. J Exp Bot, in press.
  • Xing T., Higgins V.J., Blumwald E. 1997. Race-specific elicitors of Cladosporium fulvum promote translocation of cytosolic components of NADPH oxidase to the plasma membrane of tomato cells. Plant Cell, 9: 249–259.
  • Zhang Z., Collinge D.B., Thordal-Christensen H. 1995. Germin-like oxalate oxidase, a H₂O₂-producing enzyme, accumulates in barley attacked by the powdery mildew fungus. Plant J., 8: 139–145.
  • Zimmerlin A., Wojtaszek P., Bolwell G.P. 1994. Synthesis of dehydrogenation polymers of ferulic acid with high specificity by a purified cell-wall peroxidase from French bean (Phaseolus vulgaris L.). Biochem. J., 299: 747–753.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-80078008-1059-4127-98df-a77732b296da
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.