PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 17 | 1 |

Tytuł artykułu

Indoor radon concentrations in concrete slab buildings situated in Green Hills housing estate in Bialystok, Poland

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We performed measurements in 16 houses (12 concrete-slab houses and 4 brick houses) and within each house we performed measurements in one or more rooms from cellar to 4th floor. In total, the study includes 279 indoor radon measurements. The method of alpha track detectors was used in this investigation. The measurements were performed in housing of the same construction of concrete slabs in one part of Białystok. Approximately 12 million people in Poland live in such concrete slab buildings. It was observed that mean radon concentrations in brick houses were higher (by 24%) than in concrete slab buildings situated in the same housing estate. The results for the Green Hills housing estate are believed to be representative for all concrete slab buildings in northeastern Poland.

Wydawca

-

Rocznik

Tom

17

Numer

1

Opis fizyczny

p.33-38,fig.,ref.

Twórcy

autor
  • Medical University of Bialystok, Mickiewicza 2A, 15-089 Bialystok, Poland
autor
autor
autor
autor

Bibliografia

  • 1. JAGIELAK J., BIERNACKA M., HENSCHE J., SOSIŃSKA A. Radiation Atlas of Poland 1997. CLOR (Central Laboratory of Radiological Protection), Warszawa, PAA. 1998.
  • 2. ANTONOPOULOS-DOMIS M., KRITIDIS P., RAPTIS C. Diffusion model of radon exhalation rates. Health Phys. 74, 574, 1998.
  • 3. GARBESI K., ROBINSON A.L., SEXTRO R.G., NAZAROFF W.E. Radon entry into houses: the importance of scale – dependent permeability. Health Phys. 77, 183, 1999.
  • 4. LANDMAN K.A. Diffusion of radon through cracks in a concrete slab. Health Phys. 43, 65, 1982.
  • 5. ROBINSON A.L., SEXTRO R.G. The influence of a subslab gravel layer and open area on soil-gas and radon entry into two experimental basements. Health Phys. 69, 367, 1995.
  • 6. ROGERS V.C., NIELSON K.K., HOLT R.B., SNODDY R. Radon diffusion coefficients for residential concretes. Health Phys. 67, 261, 1994.
  • 7. VAUPOTIC J. Search for radon sources in buildings kindergartens. J. Environ. Radioactivity. 61, 365, (2002).
  • 8. WARD D.C., BORAK T.B., GADD M.S. Characterization of Rn-222 entry into a basement structure surrounded by a low-permeability soil. Health Phys. 65, 1, 1993.
  • 9. ANDERSEN C.E., SOGAARD-HANSEN J., MAJBORN B. Soil gas and radon entry into a simple test structure: comparison of experimental and modeling results. Radiat. Protect. Dosim. 56, 151, 1994.
  • 10. HUBBARD L.M., HAGBERG N., ENFLO A. Temperature effect on radon dynamics in two Swedish dwellings. Radiat. Protect. Dosim. 45, 381, 1992.
  • 11. NAJAFI F.T., LALWANI L., LI W.G. Radon entry control in new house construction. Health Phys. 69, 67, 1995.
  • 12. LIVELY R.S., GOLDBERG L.F. Diffusion of radon through concrete block walls – a significant source of indoor radon. Radiat. Protect. Dosim. 82, 31, 1999.
  • 13. ZALEWSKI M., KARPIŃSKA M., MNICH Z., KAPAŁA J. Concentration of radon in water in the region North-East Poland. Przegląd Geologiczny. 45 (5), 523, 1997. [In Polish]
  • 14. KARPIŃSKA M., ZALEWSKI M., MNICH Z., KAPAŁA J., KLESZCZEWSKA E. Radiological hazard to the population from radon in the air in various types of dwellings in the North-Eastern region of Poland. Polish Journal of Environmental Studies. 8 Supl. II, 304, 1999.
  • 15. INEREB. Integrated Energy Retrofitting in Buildings. The Polish National Energy Conservation Agency. 2006.
  • 16. DURANI S.A., ILIC R. Ed. Radon measurement by etched track detectors. World Scientific Publishing Singapore 1997.
  • 17. LUCIA Version 4.60 User’s guide, system for image processing and analysis. Laboratory Imaging 2001.
  • 18. LUCIA Short description of function and basic manual of computer program for analysis of picture Lucia. Precoptic Co., Warszawa 2001. [In Polish]
  • 19. GUNBY J.A., DARBY S., MILES J., GREEN B., COX D. Factors affecting indoor radon concentrations in the United Kingdom. Health Phys. 64, 2, 1993.
  • 20. KEARFOTT K.J., METZGER R.L., HOLBERT K.E. Underground air returns as active transportation pathways for radon gas entry into homes. Health Phys. 63, 665, 1992.
  • 21. JANSSEN M.P. Modeling ventilation and radon in new Dutch dwellings. Indoor Air. 13, 118, 2003.
  • 22. LEE T.K.C., YU K.N. Effects of air conditioning, dehumidification and natural ventilation on indoor concentrations of Rn-222 and Rn-220. J. Environ. Radioactivity. 47, 189, 2000.
  • 23. MOWRIS, R.J., AND FISK, W.J. Modelling the effects of exhaust ventilation on Rn-222 entry rates and indoor Rn-222 concentrations. Health Phys. 54, 491, 1988.
  • 24. ZALEWSKI M., TOMCZAK M., KAPAŁA J., MNICH Z. Natural radioactivity of building components and materials used in Białystok province. Roczniki Akademii Medycznej w Białymstoku. 39, 64, 1994. [In Polish]
  • 25. SLUNGA E. Radon classification of building ground. Radiat. Protect. Dosim. 24, 39, 1988.
  • 26. ZALEWSKI M., MNICH Z., KAPAŁA J., KARPIŃSKA M. Radioecological analysis of the North-Eastern region of Poland. Polish Journal of Environmental Studies. 6(6), 51, 1997.
  • 27. ABU-JARAD F. AND FREMLIN J.H. The indoor concentration of radon daughters in three different areas of the U.K. Health Phys. 44, 479, 1983.
  • 28. GERKEN M., KREIENBROCK L., WELLMANN J., KREUZER M., WICHMANN H.E. Models for retrospective quantification of indoor radon exposure in case- control studies. Health Phys. 78, 268, 2000.
  • 29. PISA F.E., BARBONATE F., BETTA A., BONOMI M., ALESSANDRINI B., BOVENZI M. Residential radon and risk of lung cancer in an Italian Alpine Area. Archives of Environmental Health. 56, 208, 2001.
  • 30. DICKSON D. Home insulation may increase radiation hazard. Nature 276, 431, 1978.
  • 31. STRANDEN E., BERTEIG L., UGLETVEIT F. Study on radon in dwellings. Health Phys. 36, 413, 1979.
  • 32. ABU-JARAD F., FREMLIN J.H. Effect of internal wall covers on radon emanation inside house. Health Phys. 42, 243, 1983.
  • 33. DE JONG P., VAN DIJK W. Reduction of the radon entry rate from building materials by industrial surface coating. Radiat. Protect. Dosim. 56, 179, 1994.
  • 34. YU K.N. The effects of typical covering materials on the radon exhalation rate from concrete surface. Radiat. Protect. Dosim. 48, 367, 1993.
  • 35. YU K.N., CHEUNG T., YOUNG E.C.M., MUI W.N., TANG K.K. The effects of covering materials on indoor Rn-222 concentrations in offices in Hong Kong. J. Environ. Radioactivity 47, 183, 2000.
  • 36. ŻAK A., BIERNACKA M., MAMONT-CIEŚLA K. Investigations of radon and thoron emanation from building walls. Nukleonika, 38, 39, 1993.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-7fd0039a-7319-4429-b1e6-b3237fcc2754
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.