PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 19 | 4 |

Tytuł artykułu

Function and regulation of Arabidopsis thaliana COR [cold-regulated] genes

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Like many plants, Arabidopsis thaliana increases in freezing tolerance in response to low non-freezing temperatures, a phenomenon known as cold acclimation. Associated with cold acclimation are a number of biochemical changes including the expression of COR (cold-regulated) genes. Here we summarize recent progress we have made in understanding the function and regulation of these genes. One significant finding regarding COR gene function is that constitutive expression of COR15a in transgenic Arabidopsis plants enhances the freezing tolerance of both chloroplasts and protoplasts. These results provide the first direct evidence for a COR gene having a role in freezing tolerance. The precise mechanism of COR15a action is not yet know, but current results indicate the gene has a role in stabilizing membranes against freeze-induced damage. In regards to COR gene regulation, we have isolated a cDNA for CBF1, the first identified transcriptional activator that binds to the CRT (C-repeat)/DRE (drought responsive element), a cold- and drought-responsive DNA regulatory element present in the promoters of COR genes. Our working hypothesis is that CBF1 binds to the CRT/DRE sequence and participates in the regulation of COR genes in response to low temperature and drought.

Wydawca

-

Rocznik

Tom

19

Numer

4

Opis fizyczny

p.497-504

Twórcy

  • Michigan State University, East Lansing, MI 48824, USA
autor
autor

Bibliografia

  • Artus N.N., Uemura M., Steponkus P.L., Gilmour S.J., Lin C. & Thomashow M.F. 1996. Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proc. Natl. Acad. Sci. USA, 93: 13404–13409.
  • Baker S.S., Wilhelm K.S. & Thomashow M.F. 1994. The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought-, and ABA-regulated gene expression. Plant Mol. Biol., 24: 701–713.
  • Boyer J.S. 1982. Plant productivity and environment. Science, 218: 443–448.
  • Bray E.A. 1997. Plant responses to water deficit. Trends Plant Sci., 2: 48–54.
  • Close T.J. 1997. Dehydrins: A commonality in the response of plants to dehydration and low temperature. Physiol. Plant., 100: 291–296.
  • Dure L. III 1993. Structural motifs in LEA proteins. In, Plant Responses to Cellular Dehydration During Environmental Stress, ed. by T.J. Close, E.A. Bray, American Society for Plant Physiologists, Rockville: 91–103.
  • Elliott R.C., Betzner A.S., Huttner E., Oakes P., Tucker W.Q.J., Gerentes D., Perez P. & Smyth D.R. 1996. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell, 8: 155–168.
  • Gilmour S.J., Artus N.N. & Thomashow M.F. 1992. cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana. Plant Mol. Biol., 18: 13–21.
  • Gilmour S.J., Lin C. & Thomashow M.F. 1996. Purification and properties of Arabidopsis thaliana COR (cold-regulated) gene polypeptides COR15am and COR6.6 expressed in Escherichia coli. Plant Physiol., 111: 293–299
  • Gilmour S.J. & Thomashow M.F. 1991. Cold acclimation and cold-regulated gene expression in ABA mutants of Arabidopsis thaliana. Plant Mol. Biol., 17: 1233–1240.
  • Gosti F., Bertauche N., Vartanian N. & Giraudat J. 1995. Abscisic acid-dependent and -independent regulation of gene expression by progressive drought in Arabidopsis thaliana. Molec. Gen. Genet., 246: 10–18.
  • Griffith M., Antikainen M., Hon W.C., Pihakaski-Maunsbach K., Yu X.M., Chun J.U. & Yang D.S.C. 1997. Antifreeze proteins in winter rye. Physiol. Plant., 100: 327–332.
  • Guy C.L. 1990. Cold acclimation and freezing stress tolerance: Role of protein metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol., 41: 187–223.
  • Guy C.L., Niemi K.J. & Brambl R. 1985. Altered gene expression during cold acclimation of spinach. Proc. Natl. Acad. Sci. USA, 82: 3673–3677.
  • Hajela R.K., Horvath D.P., Gilmour S.J. & Thomashow M.F. 1990. Molecular cloning and expression of cor (cold-regulated) genes in Arabidopsis thaliana. Plant Physiol., 93: 1246–1252.
  • Horvath D.P., McLarney B.K. & Thomashow M.F. 1993. Regulation of Arabidopsis thaliana L. (Heyn) cor78 in response to low temperature. Plant Physiol., 103: 1047–1053.
  • Hughes M.A. & Dunn M.A. 1996. The molecular biology of plant acclimation to low temperature. J. Expt. Bot., 47: 291–305.
  • Imai R., Chang L., Ohta A., Bray E.A. & Takagi M. 1996. A lea-class gene of tomato confers salt and freezing tolerance when expressed in Saccharomyces cerevisiae. Gene, 170: 243–248.
  • Jofuku K.D., den Boer B.G., Van Montagu M. & Okamuro J.K. 1994. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell, 6: 1211–1225.
  • Klucher K.M., Chow H., Reiser L. & Fischer R.L. 1996. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell, 8: 137–153.
  • Levitt J. 1980. Responses of Plants to Environmental Stress. Chilling, Freezing, and High Temperature Stresses. Ed 2. Academic Press, New York.
  • Lin C., Guo W.W., Everson E. & Thomashow M.F. 1990. Cold acclimation in Arabidopsis and wheat. A response associated with expression of related genes encoding ‘boiling-stable’ polypeptides. Plant Physiol., 94: 1078–1083.
  • Lin C. & Thomashow M.F. 1992. DNA sequence analysis of a complementary DNA for cold-regulated Arabidopsis gene cor15 and characterization of the COR15 polypeptide. Plant Physiol., 99: 519–525.
  • Nordin K., Heino P. & Palva E.T. 1991. Separate signal pathways regulate the expression of a low-temperature-induced gene in Arabidopsis thaliana (L.) Heynh. Plant Mol. Biol., 16: 1061–1071.
  • Nordin K., Vahala T. & Palva E.T. 1993. Differential expression of two related, low-temperature-induced genes in Arabidopsis thaliana (L.) Heynh. Plant Mol. Biol., 21: 641–653.
  • Ohme-Takagi M., & Shinshi H. 1995. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell, 7: 173–182.
  • Okamuro J.K., Caster B., Villarroel R., VanMontagu M., & Jofuku K.D. 1997. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc. Natl. Acad. Sci. USA, 94: 7076–7081.
  • Sieg F, Schröder W., Schmitt J.M. & Hincha D.K. 1996. Purification and characterization of a cryoprotective protein (cryoprotectin) from the leaves of cold-acclimated cabbage. Plant Physiol., 111: 215–221.
  • Steponkus P.L. & Webb M.S. 1992. Freeze-induced dehydration and membrane destabilization in plants. In: Water and Life: Comparative Analysis of Water Relationships at the Organismic, Cellular and Molecular Level, ed. by G. N. Somero, C. B. Osmond, C. L. Bolis, Springer-Verlag, Berlin: 338–362.
  • Steponkus P.L., Uemura M. & Webb M.S. 1993. A contrast of the cryostability of the plasma membrane of winter rye and spring oat-two species that widely differ in their freezing tolerance and plasma membrane lipid composition. In: Advances in Low-Temperature Biology, Volume 2, ed by P.L. Steponkus, JAI Press, London: 1–67.
  • Stockinger E.J., Gilmour S.J. & Thomashow M.F. 1997. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA, 94: 1035–1040.
  • Thomashow M.F. 1993. Characterization of genes induced during cold acclimation in Arabidopsis thaliana. In: Plant Responses to Cellular Dehydration During Environmental Stress, ed. by T.J. Close, E.A. Bray, American Society of Plant Physiologists, Rockville: 137–143.
  • Thomashow M.F. 1994. Arabidopsis thaliana as a model for studying mechanisms of plant cold tolerance. In: Arabidopsis, ed. by E. Meyerowitz, C. Somerville, Cold Spring Harbor Laboratory Press, New York: 807–834.
  • Uemura M., Gilmour S.J., Thomashow M.F. & Steponkus P.L. 1996. Effects of COR6.6 and COR15am polypeptides encoded by COR (cold-regulated) genes of Arabidopsis thaliana on the freeze-induced fusion and leakage of liposomes. Plant Physiol., 111: 313–327.
  • Urrutia M.E., Duman J.G. & Knight C.A. 1992. Plant thermal hysteresis proteins. Biochim. Biophys. Acta Int. J. Biochem. Biophys., 1121: 199–206.
  • Wang H., Georges F., Pelcher L.E., Saleem M. & Cutler A.J. 1994. A 5.3-kilobase genomic fragment from Arabidopsis thaliana containing kin1 and cor6.6. Plant Physiol., 104: 291–292.
  • Webb M.S., Gilmour S.J., Thomashow M.F. & Steponkus P.L. 1996. Effects of COR6.6 and COR15am polypeptides encoded by COR (cold-regulated) genes of Arabidopsis thaliana on dehydration-induced phase transitions of phospholipid membranes. Plant Physiol., 111: 301–312.
  • Welin B.V., Olson A. & Palva E.T. 1995. Structure and organization of two closely related low-temperature-induced dhn/lea/rab-like genes in Arabidopsis thaliana L. Heynh. Plant Mol. Biol. 29: 391–395.
  • Weretilnyk E., Orr W., White T.C., Iu B. & Singh J. 1993. Characterization of three related low-temperature-regulated cDNAs from winter Brassica napus. Plant Physiol., 101: 171–177.
  • Wilhelm K.S. & Thomashow M.F. 1993. Arabidopsis thaliana cor15b, an apparent homologue of cor15a, is strongly responsive to cold and ABA, but not drought. Mol. Gen. Genet., 236: 331–340.
  • Wilson K., Long D., Swinburne J. & Coupland G. 1996. A Dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2. Plant Cell, 8: 659–671.
  • Xu D.P., Duan X.L., Wang B.Y., Hong B.M., Ho T.H.D. & Wu R. 1996. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 110: 249–257.
  • Yamaguchi-Shinozaki K. & Shinozaki K. 1993. Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol. Gen. Genet., 236: 331–340.
  • Yamaguchi-Shinozaki K. & Shinozaki K. 1994. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell, 6: 251–264.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-7d0cb4f8-6525-46fc-83cd-c4a74454f1fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.