PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1996 | 41 | 4 |

Tytuł artykułu

Cyanobacterial key to the genesis of micritic and peloidal limestones in ancient seas

Treść / Zawartość

Warianty tytułu

PL
Cyjanobakteryjna geneza wapieni mikrytowych i peloidalnych w dawnych zbiornikach morskich

Języki publikacji

EN

Abstrakty

EN
The origin of micritic and peloidal limestones comprising the bulk of many ancient marine carbonate deposits represents a major unsolved problem of carbonate sedimentology. Our studies of such limestones from a sequence of Late Jurassic open marine sediments exposed in central Poland revealed them as products of in situ calcified mats of benthic coccoid cyanobacteria. Remains of the cyanobacteria are visible in scanning electron microscope (SEM) images as characteristic patterns closely resembling the common mucilage sheaths of modern entophysalidacean and/or pleurocapsalean cyanobacteria comparable to those we found producing micritic and peloidal microbialites in Lake Van, Turkey. We suggest, by analogy, that many subtidal micritic and peloidal limestones common in the marine sedimentary record might be products of similar in situ calcified cyanobactend microbiota. Such an intensive calcification of marine cyanobacteria could have proceeded only in environments more than modern seawater supersaturated with respect to calcium carbonate minerals. Advection of excess alkalinity, originating from deeper, anaerobic or dysaerobic zones to shallow water areas is proposed as the main factor enhancing colonization of extensive sea bottom areas by the alkaliphilic cyanobacteria and promoting their in uiuo calcification.
PL
Geneza wapieni mikrytowych i peloidalnych, głównych składników większości kopalnych morskich formacji wapiennych, nie została do tej pory rozwiązana i od ponad stu lat jest jednym z bardziej kontrowersyjnych problemów sedymentologii i petrologii skał węglanowych. Przedstawione w pracy wyniki badań nad takimi wapieniami z utworów późnej jury (kimerydu) Gór Świętokrzyskich wykazały, że osady te są wytworem in situ zwapniałych bentosowych mat kokkoidalnych cyjanobakterii (= sinic). Szczątki tych mikroorganizmów widoczne są w skaningowym mikroskopie elektronowyrn w postaci charakterystycznych struktur, przypominających wspólne osłony śluzowe (glycocalyx) otaczające komórki i grupy komórek w koloniach dzisiejszych bentosowych kokkoidalnych cyjanobakterii zaliczanych do grup Chroococcales (szczególnie Entophysalis) i Pleurocapsales (Pleurocapsa). Szczegółowe badania porównawcze przeprowadzone zostały na dzisiejszych, w różnym stopniu zwapniałych matach takich cyjanobakterii występujących w alkalicznym (sodowym) Jeziorze Wan (wschodnia Turcja). Wyniki tych badań pozwalają wnioskować, że zarówno mikrytowe i peloidalne wapienie jurajskie, jak i miąższe serie podobnych morskich wapieni pospolitych w zapisie litologicznym innych okresów geologicznych są produktem in situ zwapniałych mat kokkoidalnych cyjanobakterii. Istnieją podstawy aby przypuszczać, iż tak intensywna kalcyfikacja morskich cyjanobakterii mogła odbywać się jedynie w środowisku, które w porównaniu z dzisiejszą wodą morską było bardziej przesycone w stosunku do produktu rozpuszczalności takich pospolitych minerałów węglanowych jak kalcyt i aragonit. Głównym czynnikiem utrzymującym wyższy od obecnego poziom przesycenia węglanem wapnia w dawnych środowiskach morskich był najprawdopodobniej napływ do fotycznej strefy zasiedlonej przez cyjanobakterie ekscesywnie alkalicznych wód pochodzących z głębszych, anaerobowych (stratyfikowanych) lub dysaerobowych partii zbiorników, których podwyższona alkaliczność była wynikiem metabolicznej aktywności bakterii redukujących siarczany w procesie remineralizacji substancji organicznej w strefach deficytu tlenowego.

Wydawca

-

Rocznik

Tom

41

Numer

4

Opis fizyczny

s.319-338,rys.,fot.,bibliogr.

Twórcy

  • Instytut Paleobiologii PAN, al.Zwirki i Wigury 93, PL-02-089 Warszawa
autor
  • Postgraduate Research Institute for Sedimentology, University of Reading, Whiteknights, Reading, RG6 2AB, U.K
  • Instytut Paleobiologii PAN, al.Zwirki i Wigury 93, PL-02-089 Warszawa
autor
  • Geologisch-Palaontologisches lnstitut, Technische Hochschule Darmstadt, Schnittspahnstr. 9, D-64-287 Darmstadt, Germany

Bibliografia

  • Arnemiya, Y. & Nakayama, O. 1984. The chemical composition and metal adsorption capacity of the sheath materials isolated from Microcystis, Cyanobacteria. - Japanese Journal of Limnology 45, 187-193.
  • Bathurst, R.G.C. 1975. Carbonate Sediments and their Diagenesis, 2nd ed. 658 pp. Elsevier, Amsterdam.
  • Bourelly, P. 1972. Note sur les genres Pleurocapsa et Scopulonema. In: T.V. Desikachary (ed.), Taxonomy and Biology of Blue-green Algae, 3840. University of Madras Press, Madras.
  • Brock, T.D. 1973. Lower pH limit for the existence of blue-green algae: evolutionary and ecological implications. - Science 179, 480-483.
  • Buczynski, C. & Chafetz, H.S. 1993. Habit of bacterially induced precipitates of calcium carbonate. In: R. Rezak & D.L. Lavoie (eds), Carbonate Microfabrics, 105-116. Springer, New York.
  • Butterfield, N.J., Knoll, A.H., & Swett, K. 1994. Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. - Fossils and Strata 34, 1-84.
  • Camoin, G. & Maurin, A.-F. 1988. Rôles des micro-organismes (bactéries, cyanobactéries) dans la genese des "Mud Mounds". Examples du Turonien des Jebels Biréno et Mrhila (Tunesie). - Comptes Rendus de l'Academie des Sciences Paris 307, 401-407.
  • Chafetz, H.S. 1986. Marine peloids: A product of bacterially induced precipitation of calcite. - Journal of Sedimentary Petrology 56, 812-817.
  • Cloud, P.E. Jr. 1962. Environment of calcium carbonate deposition west of Andros Island, Bahamas: - U.S. Geological Survey Professional Paper 350, 1-138.
  • Couté, A. 1982. Ultrastructure d'une cyanophycée aerienne calcifée cavernicole: Geitleria calcarea Friedmann. - Hydrobiologia 97, 255-274.
  • Cox, G., James, J.M., Leggett, K.E.A., & Osborn, R.A.L. 1989. Cyanobacterially deposited speleothems: subaerial stromatolites. - Geomicrobiology Journal 7, 245-253.
  • Crevello, P.D., Wilson, J.L., Sarg, J.F., & Read, J.F. (eds). 1989. Controls on Carbonate Platform and Basin Development. - Society of Economic Paleontologists and Mineralogists, Special Publication 44, 1-404.
  • Dalrymple, D.W. 1965. Calcium carbonate deposition associated with blue-green algal mats, Baffin Bay, Texas. - Institute of Marine Science Publications 10, 187-200.
  • Davis, R.A. Jr., Reas, K., & Robbins, L.L. 1995. Calcite mud in a Holocene back-barrier lagoon: Lake Reeve, Victoria, Australia. - Journal of Sedimentary Research A 65, 178-184.
  • Dromart, G. 1989. Deposition of Upper Jurassic fine-grained limestones in the western subalpine basin, France. - Palaeogeography, Palaeoclirnatology, Palaeoecology 69, 23-43.
  • El Haq, A.G.D. 1986. Physiological studies on a coccoid marine blue-green alga (cyanobacterium). - British Phycological Journal 21, 315-319.
  • Espie, G.S., Miller, A.G., & Canvin, D.T. 1989. Selective and reversible inhibition of active CO₂ transport by hydrogen sulfide in a cyanobacterium. - Plant Physiology 91, 387-394.
  • Fåhraeus, L.E., Slatt, R.M., & Nowland, G.S. 1974. Origin of carbonate pseudopellets. - Journal of Sedimentary Petrology 44, 27-29.
  • Ferris, F.G., Shotyk, W., & Fyfe, W.S. 1989. Mineral formation and decomposition by microorganisms. In: T. J Beveridge & R. J. Doyle (eds), Metal Ions and Bacteria, 413-441. John Wiley & Sons, New York.
  • Ferris, F.G., Wiese, R.G., & Fyfe , W.S. 1994. Precipitation of carbonate minerals by microorganisms: implications for silicate weathering and the global carbon dioxide budget. - Geomicrobiology Journal 12, 1-13.
  • Flügel, E. 1982. Microfacies Analysis of Limestones, 633 pp. Springer, Berlin.
  • Folk, R.L. 1959. Practical petrographic classification of limestones. - American Association of Petroleum Geologists Bulbtin 43, 1-38.
  • Folk, R.L. 1973. Carbonate petrography in the post-Sorbian age. In: R.N. Ginsburg (ed.), Evolving Concepts in Sedimentology. - The Johns Hopkins University Studies in Geology 21, 118-156.
  • Friedman, G.M. 1994. Great Bahama Bank aragonitic muds: mostly inorganically precipitated, mostly exported - Discussion. - Journal Sedimentary Research A 64, 921.
  • Friedman, G.M., Amiel, A.J., Braun, M., & Miller, D.S. 1973. Generation of carbonate particles and laminites in algal mats - example from sea-marginal hypersaline pool, Gulf of Aqaba, Red Sea. - American Association of Petroleum Geologists Bulletin 57, 541-557.
  • Fry, B. Jannasch, H.W., Molyneuax, S.J., Wirsen, C.O., Muramoto, J.A., & King, S. 1991. Stable isotope studies of the carbon, nitrogen and sulfur cycles in the Black Sea and the Cariaco Trench. - Deep-Sea Research 38, 1003-1019.
  • Fütterer, D.K. 1974. Significance of the boring sponge Cliona for the origin of fme grained material in carbonate sediments. - Journal of Sedimentary Petrology 44, 79-84.
  • Gerdes, G. & Krumbein, W.E. 1987. Biolaminated deposits. - Lecture Notes in Earth Sciences 9, 1-183.
  • Gessner, F. 1957. Van Gölü - Zur Limnologie des grossen Soda-Sees in Ostanatolien (Turkeil. - Archiv für Hydrobiologie 53, 1-22.
  • Golubic, S. 1976. Taxonomy of extant stromatolite-building cyanophytes. In: M.R. Walter (ed.), Stromatolites, 127-140, Elsevier, Amsterdam.
  • Golubic, S. 1982. Microbial ecology of algal mats and recent stromatolites in Shark Bay, Western Australia. - National Geographic Society Research Reports 14, 277-286.
  • Golubic, S. & Hofmann H.J. 1976. Comparison of Holocene and Mid-Precambrian Entophysalidaceae (Cyanophyta) in stromatolitic algal mats: Cell division and degradation. - Journal of Paleontology 50, 1074-1082.
  • Goyet, C., Bradshaw, A.L., & Brewer, P.G. 1991. The carbonate system in the Black Sea. - Deep-Sea Research 38, 1049-1068.
  • Grotzinger, J.P. 1989. Facies and evolution of Precambrian carbonate depositional systems: emergence of the modern platform archetype. In: P.D. Crevello, J.L. Wilson, J.F. Sarg, & J.F. Read (eds), Controls on Carbonate Platform and Basin Development. - Society of Economic Paleontologists and Mineralogists, Special Publication 44, 79-106.
  • Halley, R.B. 1976. Textural variation within Great Salt Lake algal mounds. In: M.R. Walter (ed.), Stromatolites, 435-445. Elsevier, Amsterdam.
  • Hofmann, H.J. 1975. Stratiform Precambrian stromatolites, Belcher Islands, Canada: Relations between silicified microfossils and microstructure. - American Journal of Science 275, 1121-1 132.
  • Horodyski, R.J. & Vonder Haar, S. 1975. Recent calcarcous stromatolites from Laguna Mormona, Baja California, Mexico. - Journal of Sedimentary Petrology 45, 894-906.
  • Kaźmierczak, J. & Pszczółkowski, A. 1968. Sedimentary discontinuities in the Lower Kimmeridgian of the Holy Cross Mts [in Polish with English summary]. - Acta Geologica Polonica 18, 587-612.
  • Kaźmierczak, J. & Krumbein, W.E. 1983. Identification of calcified cyanobacteria forming stromatoporoid stromatolites. - Lethaia 16, 207-213.
  • Kaźmierczak, J., Gruszczyński, M., Coleman, M.L., & Kempe, S. 1994. Coccoid cyanobacterial origin of common micritic and peloidal limestones: Jurassic and modern examples. 14th International Sedimentological Congress, Recife (Brazil), 20-26 August 1994, Abstracts, B6-B7. Federal University of Pemambuco, Recife.
  • Kaźmierczak, J., Gruszczyński, M., Coleman, M.L., & Kempe, S. 1995. Open marine micritic and peloidal limestones: product of benthic coccoid cyanobacteria. In: D. Bosence (ed.), 10th Bathurst Meeting of Carbonate Sedimentologists, 2-5th July 1995. Abstract Volume for Talks and Posters, 32-33. Royal Holloway University of London, Egham.
  • Kempe, S. 1990. Alkalinity: The link between anaerobic basins and shalow water carbonates? - Naturwissenschaften 77, 426-427.
  • Kempe, S. & Kaźmierczak, J. 1990. Calcium carbonate supersaturation and the formation of in situ calcified stromatolites. In: V. Ittekkot, S. Kempe, W. Michaelis, & A. Spitzy (eds), Facets of Modern Biogeochemistry, 255-278, Springer, Berlin.
  • Kempe, S. & Kaźmierczak J. 1993. Satonda Crater Lake, Indonesia: Hydrogeochemistry and biocarbonates. - Facies 28, 1-32.
  • Kempe, S. & Kaźmierczak, J. 1994. The role of alkalinity in the evolution of ocean chemistry, organization of living systems, and biocalcification processes. In: F. Doumenge (ed.), Past and Present Biomineralization Processes-Considerations about Carbonate Cycle. - Bulletin de l'Institut oceanographique, Monaco, Numéro spécial 13, 61-117.
  • Kempe, S., Kaźmierczak, J., Konuk, T. Landmann, G., Reimer, A., & Lipp, A. 1991. Largest known microbialites discovered in Lake Van, Turkey. - Nature 394, 605-608.
  • Kempe, S., Kaźmierczak, J., Landmann, G. & Reimer, A. (in press). Hydrochemical prere quisites for modern environments sustaining in situ calcifying cyanobacterial mats: lessons for the past. In: S.M. Awramik & R. Riding (eds), The Proceedings of the First International Stromatolite Symposium, Laughlin, Nevada, 1994.
  • Knoll, A.H., Barghoom, E.S. & Golubic, S. 1975. Paleopleurocapsa wopfnerii gen. et sp. nov.: A Late Precambrian alga and its modern counterpart. - Proceedings of the National Academy of Sciences USA 72, 2488-2492.
  • Kosinskaya, E.K. (Kosinskaâ, E.K.) 1948. Taxonomic Key to the Marine Blue-Green Algae [in Russian], 278 pp. Izdatel'stvo Akademii Nauk SSSR, Moskva.
  • Kroll, R.G. 1990. Alkalophiles. In: C. Edwards (ed.), Microbiology of Extreme Environments, 55-92. Open University Press, Milton Keynes.
  • Krulwich, T.A. & Guffanti, A.A. 1989. Alkaliphilic bacteria. - Annual Review of Microbiology 43, 435-463.
  • Krumbein, W.E. & Cohen, Y. 1977. Primary production, mat formation, and lithification: Contribution of oxygenic and facultative anoxygenic cyanobacteria. In: E. Flügel (ed.), Fossil Algae: Recent Results and Developments, 37-56. Springer, Berlin.
  • Krumbein, W.E. & Giele, C. 1979. Calcification in a coccoid cyanobacterium associated with the formation of desert stromatolites. - Sedimentology 26, 593-604.
  • Krumbein, W.E. & Swart, P.K. 1983. The microbial carbon cycle. In: W.E. Krumbein (ed.), Microbial Geochemistry, 5-62. Blackwell, Oxford.
  • Kutek, J. 1962. Cherts and submarine slumps in the Lower Kimmeridgian limestones from the vicinity of Małogoszcz (Central Poland) [in Polish with English summary]. - Acta Geologica Pobnica 12, 377-391.
  • Kutek, J. 1968. The Kimmeridgian and Uppermost Oxfordian in the SW margins of the Holy Cross Mts. (Central Poland). Part I. Stratigraphy [in Polish with English summary]. - Acta Geologica Polonica 18, 493-586.
  • Kutek, J., Matyja, B.A., & Wierzbowski, A. 1984. Late Jurassic biogeography in Poland and its stratigraphical implications. In: O. Michelsen & A. Zeiss (eds), International Symposium on Jurassic Stratigraphy, vol. 3, 743-754. Geological Survey of Denmark, Copenhagen.
  • Land, L.S. 1970. Carbonate mud: Production by epibiont growth on Thalassia testudinum: - Journal of Sedimentary Petrology 40, 1361-1363.
  • Lopes, C.E.A., Texeira, A.C.D., Maddock, J.E.L., Tobschall, H.J., & Höhne, A. 1986. Absorption of metals by benthic microbial mats and sediments of Lagoa Vermelha, Brazil. - Science of the Total Environment 58, 55-62.
  • Macintyre, I.G. 1985. Submarine cements - The peloidal question. In: N. Schneidermann & P.M. Harris (eds), Carbonate Cements. - Society of Economic Paleontologists and Mineralogists, Special Publication 36, 109-116.
  • Merz, M. 1992. The biology of carbonate precipitation by cyanobacteria. - Facies 26, 81-102.
  • Merz, M. & Zankl, H. 1993. The influence of the sheath on carbonate precipitation by Cyanobacteria. In: F. Baratollo, P. De Castro & M. Parente (eds), Studies on Fossil Benthic Algae. - Bolletino della Societa Palaeontologica Italiana, Special Volume 1, 325-331.
  • Miller, A.G., Espie, G.S., & Canvin, D.T. 1989. Physiological aspects of CO₂ and HCO₃⁻ transport by cyanobacteria: a review. - Canadian Journal of Botany 68, 1291-1302.
  • Milliman, J.D. 1994. Great Bahama Bank aragonitic mud: mostly inorganically precipitated, mostly exported - Reply. - Journal of Sedimentary Research A 64, 922.
  • Milliman, J.D., Freile, D., Steinen, R.P., & Wilber, R. J. 1993. Great Bahama Bank aragonitic muds: mostly inorganically precipitated, mostly exported. - Journal of Sedimentary Petrology 63, 589-595.
  • Monty, C.L.V. 1976. The origin and development of cryptalgal fabrics. In: M.R. Walter (ed.), Stromatolites, 193-259, Elsevier, Amsterdam.
  • Monty, C.L.V., Bosence, D.W.J., Bridges, P.H. & Prott, B.R. (eds). 1995. Carbonate Mud- Mounds: Their Origin and Evolution. 537 pp. Blackwell, Oxford.
  • Oehler, D.Z. 1978. Microflora of the middle Proterozoic Balbirini Dolomite (McArthur Group) of Australia. - Alcheringa 2, 269-309.
  • Pentecost, A. & Bauld, J. 1988. Nucleation of calcite on the sheaths of cyanobacteria using a simple diffusion cell. - Geomicrobiology Journal 6, 129-135.
  • Pentecost, A. & Spiro, B. 1990. Stable carbon and oxygen isotope composition of calcites associated with modern freshwater cyanobacteria and algae. - Geomicrobiology Journal 8, 17-26.
  • Pickard, N.A.H. 1995. Evidence for microbial influence on the development of Lower Carboniferous buildups. In: P. Strogen, I.D. Sommerville, & G.L1. Jones (eds), Recent Advances in Lower Carboniferous Geology. - Geological Society Special Publication 107, 371-385.
  • Pszczółkowski, A. 1970. Application of aerial photographs in the research of the Kimmeridgian deposits in the SW margin of the Holy Cross Mts [in Polish with English summary]. - Acta Geologica Polonica 20, 337-363.
  • Reid, R.P., Macintyre, I.G. & Post, J.E. 1992. Micritized skeletal grains in northern Belize lagoon: A major source of Mg-calcite mud. - Journal of Sedimentary Petrology 62, 145-156.
  • Riding, R. 1991. Classification of microbial carbonates. In: R. Riding (ed.), Calcareous Algae and Stromatolites, 21-51. Springer, Berlin.
  • Rippka, R., Waterbury, J.B., & Stanier, R.Y. 1981. Provisional generic assignements for cyanobacteria in pure culture. In: M.P. Starr, H. Stolp, H.G. Trüper, A. Baldos, & H.G. Schlegel (eds), The Prokaryotes, vol. 1, 247-256. Springer, Berlin.
  • Robbins, L.L. & Blackwelder, P.L. 1992. Biochemical and ultrastructural evidence for the origin of whitings: A biologically induced calcium carbonate precipitation mechanism. - Geology 20, 464-468.
  • Schultze-Lam, S. & Beveridge, T.J. 1994. Nucleation of celestite and strontianite on a cyanobacterial S-layer. - Applied and Environmental Microbiology 60, 447-453.
  • Schultze-Lam, S.. Harauz, G., & Beveridge, T. J. 1992. Participation of a cyanobacterial S layer in fine-grain mineral formation. - Journal of Bacteriology 174, 7971-7981.
  • Shinn, E.A., Steinen, R.P., Lidz, B.H., & Swart, P. 1989. Perspectives: Whitings, a sedimentologic dilemma. - Journal of Sedimentary Petrology 59, 147-161.
  • Sieburth, J. McN. 1979. Sea Microbes. 491 pp. Oxford University Press, New York.
  • Simkiss, K. 1986. The process of biomineralization in lower plants and animals. In: B.S.C. Leadbeater & R. Riding (eds), Biomineralization in Lower Plants and Animals. - The Systematics Association Special Volume 30, 19-37. Clarendon Press, Oxford.
  • Smalley, P.C., Maile, C.N., Coleman, M.L., & Rouse, J. 1992. LASSIE (laser ablation sampler for stable isotope extraction) applied to carbonate minerals. - Chemical Geology (Isotope Geoscience Section) 101, 43-52.
  • Sun, S.Q. & Wright, V.P. 1989. Peloidal fabrics in Upper Jurassic reefal limestones, Weald Basin, southern England. - Sedimentary Geology 65, 165-181.
  • Thompson, J.B. & Ferris, F.G. 1990. Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water. - Geology 18, 995-998.
  • Tucker, M.E. & Wright, V.P. 1990. Carbonate Sedimentology. 482 pp. Blackwell, Oxford.
  • Tucker M.E., Wilson, J.L., Crevello, P.D., Sarg, J.R., & Read J.F. (eds). 1990. Carbonate Platforms - Facies, Sequences and Evolution. 328 pp. Blackwell, Oxford.
  • Van Liere, L. & Walsby, A.E. 1982. Interactions of cyanobacteria with light. In: N.G. Carr & B.A. Whitton (eds), The Biology of Cyanobacteria, 9-45, Oxford, Blackwell.
  • Waterbury, J.B. & Stanier, R.Y. 1978. Patterns of growth and development in pleurocapsalean cyanobacteria. - Microbiological Reviews 42, 2-44.
  • Wilson, J.L. 1975. Carbonate Facies in Geologic Histoy. 470 pp. Springer, New York.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-7c4c9590-9923-4367-852e-bd61668b2206
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.