PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1999 | 04 | 1 |

Tytuł artykułu

A general probabilistic approach to the universal relaxation response of complex systems

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A new probabilistic representation of the multichannel relaxation mechanism, which generates the universal two power-law relaxation response with the stretched exponential and the classical exponential decays as special cases, is presented. The consideration of irreversible stochastic transitions of complex systems is based on a general probabilistic formalism applied to the analysis of the first passage of a system. By means of limit theorems the origins of the universality of relaxation responses are indicated. This approach, without referring to the conventional stochastic transition description, allows us to derive explicitly the intensity of transition from an initial state for a complex system in the most general case of parallel channel relaxation with a random number of transition channels, each characterized by an individual relaxation rate. The nonexponential relaxation is shown to result from general properties of transition channels only, namely, from the asymptotical self-similar behavior of their relaxation rate distributions. For the reader’s convenience a survey of limit theorems of probability theory is included in the Appendix.

Wydawca

-

Rocznik

Tom

04

Numer

1

Opis fizyczny

p.55-86

Twórcy

autor
  • Wroclaw University of Technology, Wyspianskiego 27, 50-370 Wroclaw, Poland
autor

Bibliografia

  • 1. Płonka, A., Time-Dependent Reactivity of Species in Condensed Medica Lecture Notes in Chem. vol. 40, Springer, Berlin, 1986.
  • 2. Płonka, A., Prog. React. Kinetics 16, (1991), 157-334.
  • 3. Frauenfelder, H., Nienhaus, G. U., and Johnson, J. B., Ber. Bunsenges Phys. Chem. 95, (1991), 272-278.
  • 4. Berlin, Yu. A., Chekunaev, N. I., and Goldanskii, V. I., Chem. Phys. Lett. 197, (1992). 81-85.
  • 5. Płonka, A., Annu. Rep. Prog. Chem. Sec. C, Phys. Chem. 91, (1994), 107-173.
  • 6. Frauenfelder, H., and Wolynes, P., Physics Today 47, (1994), 58-68.
  • 7. Goldanskii, V. I., and Parak, F., Chem. Phys. Lett. 239, (1994), 379-383.
  • 8. Berlin, Yu. A., Miller, J. R., and Płonka, A. (Eds), Rate Processes with Kinetic Parameters Distributed over Time and Space, Chem. Phys. 212, (1996).
  • 9. Dewey, T. G., Fractals in Molecular Biophysics, Oxford University Press, Oxford, 1997.
  • 10. Böttcher, C. J., and Bordewijk, P., Theory of Electronic Polarisation vol. 2, Elsevier, Amsterdam, 1978.
  • 11. Jonscher, A. K., Dielectric Relaxation in Solids, Chelsea Dielectrics Press, London, 1983.
  • 12. Dattagupta, S., Relaxation Phenomena in Condensed Matter Physics, Academic Press, Orlando, 1987.
  • 13. Dittes, F. M., Harney, H. L., and Müller, A., Phys. Rev. A 45, (1992), 701-710.
  • 14. Vlad, M. O., Int. J. Mod. Phys. B 7, (1993), 2539-2547.
  • 15. Nonnenmacher, T. F., in Rheological Modeling: Thermodynamical and Statistical Approaches, Lecture Notes in Chem. vol. 381, Springer, Berlin, 1991, 309-319.
  • 16. Koyama, J., and Hara, H., Phys. Rev. A 46, (1992), 1844-1849.
  • 17. Płonka, A., Berlin, Yu. A., and Chekunaev, N. I., Chem. Phys. Lett. 158, (1989), 380-382.
  • 18. Mackey, M. C., and Milton, J., J. Math. Biol 28, (1990), 33-38.
  • 19. Zwanzig, R., J. Chem. Phys. 97, (1992), 3587-3592.
  • 20. Jonscher, A. K., Universal Relaxation Law, Chelsea Dielectrics Press, London, 1996.
  • 21. Havriliak, S. Jr., and Havriliak, S. J., J. Non-Cryst. Solids 172-174, (1994), 297-310.
  • 22. Montroll, E. W, and Bendler, J. T., J. Stat. Phys. 34, (1984), 129-163.
  • 23. Blumen, A., Klafter, J., and Zumofen, G., in Optical Spectroscopy of Glasses, I. Zschokke (ed), Reidel, Amsterdam, 1986, 199-265.
  • 24. Shlesinger, M. F., Annu. Rev. Phys. Chem. 39, (1988), 269-290.
  • 25. Blumen, A., Nuovo Cimento B 63, (1981), 50-54.
  • 26. Palmer, R. G., Stein, D., Abrahams, E. S., and Anderson, P. W., Phys. Rev. Lett. 53, (1984), 958-961.
  • 27. Vlad, M. O., Phys. Rev. A 45, (1992), 3596-3599.
  • 28. Vlad, M. O., Huber, D. L., and Ross, J., J. Chem. Phys. 106, (1997), 1-11.
  • 29. Bendler, J. T, J. Stat. Phys. 36, (1986), 625-631.
  • 30. Weron, K., Acta Phys. Pol. A 70, (1986), 529-539.
  • 31. Weron, K., J. Phys.: Condens. Matter 3, (1991), 9151-9162. Weron, K., J. Phys.: Condens. Matter 4, (1992), 10507-10512.
  • 32. Weron, K., and Jurlewicz, A., J. Phys. A: Math. Gen. 26, (1993), 395-410.
  • 33. Jurlewicz, A., and Weron, K., J. Stat. Phys. 73, (1993), 69-81.
  • 34. Jurlewicz, A., Weron, A., and Weron, K., Appl. Math. 23, (1996), 379-394.
  • 35. Weron, K., and Kotulski, M., J. Stat. Phys. 88, (1997), 1241-1256.
  • 36. Berlin, Yu. A., Drobnitsky, D. O., and Kuz'min, V. V., J. Phys. A: Math. Gen. 26, (1993), 5973-5984.
  • 37. Berlin, Yu. A., Drobnitsky, D. O., and Kuz'min, V. V., J. Chem. Phys. 100, (1994), 3163-3168.
  • 38. Berlin, Yu. A., Chem. Phys. 212, (1996), 29-39.
  • 39. Berlin, Yu. A., and Burin, A. L., Chem. Phys. Lett. 267, (1997), 234-238.
  • 40. Berlin, Yu. A., Burin, A. L., and Fisher, S. F., Chem. Phys. 220, (1997), 25-41.
  • 41. Van Kampen, N. G., Stochastic Processes in Physics and Chemistry, Elsevier, Amsterdam, 1987.
  • 42. Scher, H., Shlesinger, M. F., and Bendler, J. T., Physics Today, (1991), 26-34.
  • 43. Feller, W., An Introduction to Probability and Its Applications vol. 1 and 2, Wiley, New York, 1966.
  • 44. Johnson N. L., and Kotz S., Distributions in Statistics: Discrete Distributions, Wiley, New York, 1969; Distributions in Statistics: Continuous Univariate Distributions 1, 2, Wiley, New York, 1970.
  • 45. Pillai, R. N., Ann. Inst. Stat. Math. 42, (1990), 157-161.
  • 46. Kozubowski, T. J., and Panorska, A. K., Statistics Prob. Lett. 29, (1996), 307-315.
  • 47. Breiman, L., Probability, SIAM, Philadelphia, 1992.
  • 48. Rényi, A., Probability Theory, Akadémiai Kiadó, Budapest, 1970.
  • 49. Billingsley, P., Probability and Measure, Wiley, New York, 1979.
  • 50. Papoulis, A., Probability, Random Variables, and Stochastic Processes, McGraw-Hill, 1965.
  • 51. Janicki, A., and Weron, A., Simulation and Chaotic Behavior of α-Stable Stochastic Processes, Marcel Dekker, New York, 1993.
  • 52. Gnedenko, B. V., and Kolmogorov, A. N., Limit Distributions for Sums of Independent Random Variables, Addison-Wesley, Cambridge, 1954.
  • 53. Zolotariew, V. M., One-dimensional Stable Distributions, American Mathematical Society, Providence, 1986.
  • 54. Leadbetter, M. R., Lindgren, G., and Rootzen, H., Extremes and Related Properties of Random Sequences and Processes, Springer, New York, 1986.
  • 55. Laha, R.G., and Rohatgi, V. K., Probability Theory, Wiley, New York, 1979.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-7bd93c87-0245-4f07-81fd-7768b9549763
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.