PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 28 | 5 |

Tytuł artykułu

Evidence for a role of Ethylene-Insensitive 2 gene in the regulation of the oxidative stress response in Arabidopsis

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The Arabidopsis Ethylene-Insensitive 2 (EIN2) gene has been shown to be involved in mediating the oxidative stress response; however, little is known about the underlying mechanisms involved. In this study, we found that the ethylene-insensitive mutant ein2-1 showed enhanced tolerance to oxidative stresses caused by both paraquat (PQ) and hydrogen peroxide as well as alleviated oxidative damage. Moreover, higher transcript levels of a choroplast Cu/Zn superoxide dismutase gene CSD2 and a catalase gene CAT3 and, consequently, higher activities of superoxide dismutase (SOD) and catalase (CAT), were detected in ein2-1 plants than in wild-type plants in the abtence or presence of PQ. These retults suggest that the ein2-1mutation results in constitutive activation of CSD2 and CAT3 genes and increases in the activities of SOD and CAT and, consequently, enhanced oxidative stress tolerance.

Wydawca

-

Rocznik

Tom

28

Numer

5

Opis fizyczny

p.417-425,fig.,ref.

Twórcy

autor
  • Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
autor
autor

Bibliografia

  • Ahlfors R., Lang S., Overmyer K., Jaspers P., Brosche M., Tauriainen A., Kollist H., Tuominen H., Belles-Boix E., Piippo M., Inze D., Palva E.T., Kangasjarvi J. 2004. Arabidopsis RADl CAL-INt DUCED CELL DEATH 1 belongs to the WWE pro t tein-protein interaction domain protein family and modulates abscisic acid, ethylene, and methyl jasmonate responses. Plant Cell, 16: 1925-1937.
  • Alonso J.M., Hirayama T., Roman G., Nourizadeh S., Ecker J.R. 1999. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science, 284: 2148-2152.
  • Beauchamp C., Fridovich I. 1971. Superoxide dis t mutase: improved ass ay and an ass ay applic able to PAGE. Anal. Biochem., 44: 276-287.
  • Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
  • Dat J., Vandenabeele S., Vranova E., Van Montagu M., Inze D., Van Breusegem F. 2000. Dual action of the active oxygen species during plant stress re tponses. Cell. Mol. Life Sci., 57: 779-795.
  • Devi S.R., Prasad M.N.V. 1998. Copper toxicity in Ceratophyllum demersum L. (Coontail), a free floating macrophyte: Response of antioxidant enzymes and antioxidants. Plant Sci., 138: 157-165.
  • Dhindsa R.S., Dhindsa P., Thorpe T.A. 1987. Leaf senescence correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide ismutase and catalase. J. Exp. Bot., 32: 93-101.
  • Dirk I., Marc V.M. 1995. Oxidative stress in plants. Curr. Opin. Biotechnol., 6: 153-l58.
  • Guzman P., Ecker J.R. 1990. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell, 2: 513-523.
  • Feng Z., Jin-Kui G., Ying-Li Y., Wen-Liang H., Li-Xin Z. 2004. Changes in the pattern of antioxidant enzymes in wheat exposed to water deficit and rewatering. Acta Physiol. Plant., 26: 345-353.
  • Fujibe T., Saji H., Arakawa K., Yabe N., Takeuchi Y., Yamamoto K.T. 2004. A methyl viologen-resistant mutant of Arabidopsis, which is allelic to ozone-sensitive rcd1, is tolerant to supplemental ultraviolet-B irradiation. Plant Physiol., 134: 275-285.
  • Hart J.J., Ditomaso J.M. 1994. Sequestration and oxygen radical detoxification as mechanisms of paraquat resistance. Weed Sci., 42: 27-284.
  • Kamińska-Rożek E., Pukacki P.M. 2004. Effect of water deficit on oxidative stress and degradation of cell membranes in needles of Norway spruce (Picea abies). Acta Physiol. Plant., 26: 431-442.
  • Kliebenstein D.J., Monde R., Last R.L. 1998. Superoxide dismutase in Arabidopsis: an eclectic em zyme family with disparate regulation and protein localization. Plant Physiol., 118: 637-650.
  • Kurepa J., Smalle J., Van Montagu M., Inez D. 1998. Oxidative stress tolerance and longevity in Arabidopsis: the late-flowering mutant gigantea is tolerant to paraquat. Plant J., 14: 759-764.
  • Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci., 7: 405--410.
  • Mittler R., Vanderauwera S., Gollery M., Breusegem F.V. 2004. Reactive oxygen gene network of plants. Trends in Plant Sci., 9: 490-498.
  • Murashige T., Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant., 15: 473-497.
  • Okuda T., Matsuda Y., Yamanaka A., Sagisaka S. 1991. Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat is caused by cold treatment. Plant Physiol., 197: 1265-1267.
  • Orendi G., Zimmermann P., Baar C., Zentgraf U. 2001. Loss of stress-induced exprestion of catalase3 during leaf senescence in Arabidopsis thaliana is restricted to oxidative stress Plant Sci.,161: 301-314.
  • Overmyer K., Brosche M., Kangasjarvi J. 2003. Reactive oxygen spedes and hormonal control of cell death. Trends in Plant Sci., 8: 335-342.
  • Paepe A.D., Vuylsteke M., Hummelen P.V., Zabeau M., Straeten D.V.D. 2004. Transcriptional profiling by cDNA-AFLP and microarray analysis reveals novel insights into the early response to ethylene in Arabidopsis. Plant J., 39: 537-559.
  • Prasad S. M., Dwivedi R.,, Zeeshan M., Singh R. 2004. UV-B and cadmium induced changes in pigments, photosynthetic electron transport activity, antioxidant levels and antioxidative enzyme activities of Riccia sp. Acta Physiol. Plant., 26: 423-430.
  • Purba E., Preston C., Powles S.B. 1995. The mechanism of resistance to paraquat is strongly temperature dependent in resistant Hordeum leporinum Link and H. glaucum Steud. Planta, 196: 464-468.
  • Rao M.V., Davis R.D. 1999. Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J., 17: 603-614.
  • Rao M.V., Paliyath G., Ormrod D.P., Murr D.P., Watkins C.B. 1997. lnfluence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes (salicylic acid-mediated oxidative damage requires H2O2). Plant Physiol., 115: 137-149.
  • Rao K.V.M., Stresty T.V.S. 2000. Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci., 157: 113-128.
  • Scandalios J.G. 2002. Oxidative stress responses - what have genome-scale studies taught us? Genome Biology, 3: 10191-10196.
  • Shah K., Kumar R.G., Verma S., Dubey R.S. 2001. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci., 161: 1135-1144.
  • Vranova E., Inze D., Van Breusegem F. 2002. Signal transduction during oxidative stress. J. Exp. Bot., 53: 1227-1236.
  • Wang K., Li H., Ecker J.R. 2002. Ethylene biosynthesis and signaltng networks. Plant Cell, 14: S13L -S151.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-7b8a3771-0786-4173-8762-87251e843042
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.