PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 08 | 3 |

Tytuł artykułu

A new double-chamber model of ion channels. Beyond the Hodgkin and Huxley model

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This paper proposes a new double-chamber model (DCM) of ion channels. The model ion channel consists of a series of three pores alternating with two chambers. The chambers are net negatively charged. The chamber’s electric charge originates from dissociated amino acid side chains and is pH dependent. The chamber’s net negative charge is compensated by cations present inside the chamber and in a diffuse electric layer outside the chamber. The pore’s permeability is constant independent of time. One pore of the sodium channel and one of the potassium channel is a voltage-sensing pore. Due to the channel's structure, ions flow through the pores and chambers in a time-dependent manner. The model reproduces experimental voltage clamp and action potential data. The current flowing through a single sodium channel is less then one femtoampere. The DCM is considerably simpler then the Hodgkin and Huxley model (HHM) used to describe the electrophysiological properties of an axon. Unlike the HHM, the DCM can explain refractoriness, anode break excitation, accommodation and the effect of pH and temperature on the channels without additional parameters. In the DCM, the axon membrane shows repetitive activity depending on the channel density, sodium to potassium channel ratio and external potassium concentration. In the DCM, the action potential starts from ‘hot spot areas’ of higher channel densities and a higher sodium to potassium channel ratio, and then propagates through the whole axon.

Wydawca

-

Rocznik

Tom

08

Numer

3

Opis fizyczny

p.749-775,fig.

Twórcy

autor
  • Warsaw Agricultural University, Rakowiecka 26-30, 02-528 Warsaw, Poland

Bibliografia

  • 1.Hille, B. Ionic channels of excitable membranes. Sinauer. Sunderland (1992).
  • 2.Johnston, D. and Wu, S.M.S. Foundations of cellular neurophysiology. MIT Press, Cambridge, 1995.
  • 3.Hodgkin, A.L. and Huxley, A.F. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 116 (1952) 449-472.
  • 4.Hodgkin, A.L. and Huxley, A.F. The components of membrane conductance in the giant axon of Loligo. J. Physiol. 116 (1952) 473-496.
  • 5.Hodgkin, A.L. and Huxley, A.F. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. 116 (1952) 497-506.
  • 6.Hodgkin, A.L. and Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117 (1952) 500-544.
  • 7.Aidley, D.J. The physiology of excitable cells. The University Press, Cambridge, 1978.
  • 8.Weiss, T.F. Cellular biophysics. Vol. 2. Electrical properties. The MIT Press, Cambridge and London, 1996.
  • 9.Neher, E. Ion channels for communication between and within cells. Neuron 8 (1992) 605-612.
  • 10.Guttman, R. Temperature dependence of accommodation and excitation in space-clamped axons. J. Gen. Physiol. 51 (1968) 759-769.
  • 11.Jakobsonn, E. and Guttman, R. The standard Hodgkin-Huxley model and squid axons in reduced external Ca++ fail to accommodate to slowly rising currents. Biophys. J. 31 (1980) 293-297.
  • 12.Goldin, A.L. Voltage-gated sodium in: Handbook of Receptors and Channels. Ligand- and voltage-gated ion channels. (North, R.A., Ed.), CRC Press, Boca Raton, 1995, 73-111.
  • 13.Chandy, K.G. and Gutman, G.A. Voltage-gated K+ channels. In: Handbook of Receptors and Channels. Ligand- and voltage-gated ion channels. (North, R.A., Ed.), CRC Press, Boca Raton, 1995, 1-71.
  • 14.Doyle, D.A., Cabral, J.M., Pfuetzner, R.A., Kuo, A., Gulbis, J.M., Cohen, S.L., Chait, B.T. and MacKinnon, R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280 (1998) 69-77.
  • 15.Armstrong, C.M., Benzanilla, F. and Rojas, E. Destruction of sodium conductance inactivation in squid axons perfused with pronase. J. Gen. Physiol. 62 (1973) 375-391.
  • 16.Keynes, R.D. and Aidley, D.J. Nerve and Muscle, 2nd edition, University Press, Cambridge, 1992.
  • 17.Armstrong, C.M. Ionic pores, gates, and gating currents. Quart. Rev. Biophys. 7 (1974) 179-210.
  • 18.Levinson, S.R. and Meves, H. The binding of tritiated tetrodotoxin to squid giant axons. Phil. Trans. Roy. Soc. Lond. B 270 (1975) 349-352.
  • 19.Strichartz, G.R., Rogart, R.B. and Ritchie, J.M. Binding of radioactively labelled saxitoxin to the squid giant axon. J. Mem. Biol. 48 (1979) 357-364.
  • 20.Conti, F.B., DeFelice, L.J. and Wanke, E. Potassium and sodium ion current noise in the membrane of the squid giant axon. J. Physiol. 248 (1975) 45-82.
  • 21.Llano, I., Webb, C.K. and Bezanilla, F. Potassium conductance of the squid giant axon. J. Gen. Physiol. 92 (1988) 179-196.
  • 22.Keynes, R.D. The ionic movement during nervous activity. J. Physiol. 114 (1951) 119-150.
  • 23.Weidmann, S. Electrical characteristics of Sepia axons. J. Physiol. 114 (1951) 372-381.
  • 24.Hodgkin, A.L. and Rushton, W.A.H. The electrical constants of a crustacean nerve fibre. Proc. R. Soc. Lond. [Biol.]. 133 (1946) 444-479.
  • 25.Bodoia, R.D. and Detwiller, P.B. Patch-clamp recordings of the light-sensitive dark noise in retinal rods from the lizard and frog. J. Physiol. 367 (1985) 183-216.
  • 26.Zweifach, A. and Lewis, R. Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca stores. Proc. Nat. Acad. Sci. USA 90 (1993) 6295-6299.
  • 27.Sigworth, F.J. and Neher, E. Single Na+ channel currents observed in cultured rat muscle cells. Nature 287 (1980) 447-449.
  • 28.Horn, R. and Vanderberg, C.A. Statistical properties of single sodium channels. J. Gen. Physiol. 84 (1984) 505-534.
  • 29.Hagiwara, S. and Oomura, Y. The critical depolarization for the spike in the squid giant axon. Jap. J. Physiol. 8 (1958) 234-245.
  • 30.Clay, J.R. Excitability of the squid giant axon revisited. J. Neurophysiol. 80 (1998) 903-913.
  • 31.Wolff, M., Vogel, W. and Safronov, B.V. Uneven distribution of K+ channels in soma, axon and dendrites of rat spinal neurones: functional role of the soma in generation of action potentials. J. Physiol. 509.3 (1998) 767-776.
  • 32.Madeja, M. Do neurons have a reserve of sodium channels for the generation of action potentials? A study on acutely isolated CA1 neurons from the guinea-pig hippocampus. Eur. J. Neurosci. 12 (2000) 1-7.
  • 33.Astion, M.L., Coles, J.A., Orkand, R.K. and Abbott, N.J. K+ accumulation in the space between giant axon and Schwann cell in the squid Alloteuthis. Effects of changes in osmolarity. Biophys. J. 53 (1988) 281-285.
  • 34.Hodgkin, A.L., Huxley, A.F. and Katz, B. Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J. Physiol. 116 (1952) 424-448.
  • 35.Ritchie, J.M. and Rogart, R.B. The binding of saxitoxin and tetrodotoxin to excitable tissue. Rev. Physiol. Biochem. Pharmacol. 79 (1977) 1-50.
  • 36.Rasband, M.N. and Shrager, P. Ion channel sequestration in central nervous system axons. J. Physiol. 525 (2000) 63-73.
  • 37.Colledge, M. and Froehner, S.C. Signals mediating ion channel clustering at the neuromuscular junction. Curr. Opin. Neurobiol. 8 (1998) 357-363.
  • 38.Trinidad, J.C., Fischbach, G.D. and Cohen, J.B. The Angrin/MuSK signalling pathway is spatially segregated from the Neuregulin/ErbB receptor signalling pathway at the neuromuscular junction. J. Neurosci. 20 (2000) 8762-8770.
  • 39.Hodgkin, A.L. and Katz, B. The effect of temperature on the electrical activity of the giant axon of the squid. J. Physiol. 109 (1949) 240-249.
  • 40.Kukita, F. and Yamagishi, S. Slowing of the time course of the excitation of squid giant axons in viscous solutions. J. Mem. Biol. 47 (1979) 303-325.
  • 41.Strickholm, A. and Clark, H.R. Ionic permeability of K, Na, and Cl in crayfish nerve. Biophys. J. 19 (1977) 29-48.
  • 42.Woodhull, A. Ionic blockage of sodium channels in nerve. J. Gen. Physiol. 61 (1973) 687-708.
  • 43.Carbone, E., Fioravanti, R., Prestipino G. and Wanke, E. Action of extracellular pH on Na+ and K+ membrane currents in the giant axon of Loligo Vulgaris. J. Mem. Biol. 43 (1978) 295-315.
  • 44.Hille, B. Ionic selectivity, saturation, and block in sodium channels: a four-barrier model. J. Gen. Physiol. 66 (1975) 535-560.
  • 45.Scuka, M. The amplitude and the time course of the end plate current at various pH levels in the frog sartorius muscle. J. Physiol. 369 (1975) 183-195.
  • 46.Goldberg, G. and Fass, Y. Evidence for acetylcholine receptor blockade by intracellular hydrogen ions in cultured chick myoballs. J. Physiol. 343 (1983) 429-437.
  • 47.Clay, J.R. IK inactivation in squid axons is shifted along the voltage axis by changes in the intracellular pH. Biophys. J. 58 (1990) 797-801.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-7af38e6e-b84a-4383-acc8-408b83ea72a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.