Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 13 | 3 |
Tytuł artykułu

The liquid-ordered phase in sphingomyelin-cholesterol membranes as detected by the discrimination by oxygen transport [DOT] method

Warianty tytułu
Języki publikacji
Membranes made from binary mixtures of egg sphingomyelin (ESM) and cholesterol were investigated using conventional and saturation-recovery EPR observations of the 5-doxylstearic acid spin label (5-SASL). The effects of cholesterol on membrane order and the oxygen transport parameter (bimolecular collision rate of molecular oxygen with the nitroxide spin label) were monitored at the depth of the fifth carbon in fluid- and gel-phase ESM membranes. The saturation-recovery EPR discrimination by oxygen transport (DOT) method allowed the discrimination of the liquid-ordered (l o), liquid-disordered (l d), and solid-ordered (s o) phases because the bimolecular collision rates of the molecular oxygen with the nitroxide spin label differ in these phases. Additionally, oxygen collision rates (the oxygen transport parameter) were obtained in coexisting phases without the need for their separation, which provides information about the internal dynamics of each phase. The addition of cholesterol causes a dramatic decrease in the oxygen transport parameter around the nitroxide moiety of 5-SASL in the l o phase, which at 50 mol% cholesterol becomes ∼5 times smaller than in the pure ESM membrane in the l d phase, and ∼2 times smaller than in the pure ESM membrane in the s o phase. The overall change in the oxygen transport parameter is as large as ∼20-fold. Conventional EPR spectra show that 5-SASL is maximally immobilized at the phase boundary between regions with coexisting l d and l o phases or s o and l o phases and the region with a single l o phase. The obtained results all owed for the construction of a phase diagram for the ESM-cholesterol membrane.
Opis fizyczny
  • Medical College of Wisconsin, Milwaukee, WI 53226, USA
  • 1. Simons, K. and Ikonen, E. Functional rafts in cell membranes. Nature 387 (1997) 569-572.
  • 2. Shaikh, S.R. and Edidin, M.A. Membranes are not just rafts. Chem. Phys. Lipids 144 (2006) 1-3.
  • 3. Kusumi, A., Koyama-Honda, I. and Suzuki, K. Molecular dynamics and interactions for creation of stimulation-induced stabilized rafts from small unstable steady-state rafts. Traffic 5 (2004) 213-230.
  • 4. Mayor, S. and Rao, M. Rafts, scale dependent, active lipid organization at the cell surface. Traffic 5 (2004) 231-240.
  • 5. Edidin, M. The state of lipid rafts from model membranes to cells. Annu. Rev. Biophys. Biomol. Struct. 32 (2003) 257-283.
  • 6. Munro, S. Lipid rafts: delusive or illusive. Cell 115 (2003) 377-388.
  • 7. Brown, D.A. and London, E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem. 275 (2000) 17221-17224.
  • 8. Brown, D.A. and Rose, J.K. Sorting of GPI-anchored proteins to glycolipidenriched membrane subdomains during transport to the apical cell surface. Cell 68 (1992) 533-544.
  • 9. Ridgway, N.D. Interaction between metabolism and intracellular distribution of cholesterol and sphingomyelin. Biochim. Biophys. Acta 1484 (2000) 129-141.
  • 10. Pralle, A., Keller, P., Florin, E.L., Simons, K. and Horber, J.K.H. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148 (2000) 997-1008.
  • 11. Friedrichson, T. and Kurzchalia, T.V. Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature 394 (1998) 802-805.
  • 12. Heerklotz, H. Triton promotes domain formation in lipid raft mixtures. Biophys. J. 83 (2002) 2693-2701.
  • 13. Pike, L.J. Rafts defined: a report on the Keystone symposium on lipid rafts and cell function. J. Lipid Res. 47 (2006) 1597-1598.
  • 14. Kawasaki, K., Yin, J.-J., Subczynski, W.K., Hyde, J.S. and Kusumi. A. Pulse EPR detection of lipid exchange between protein-rich raft and bulk domains in the membrane: Methodology development and its application to studies of influenza viral membrane. Biophys. J. 80 (2001) 738-748.
  • 15. Suzuki, K.G.N., Fujiwara, T.K., Sanematsu, F., Iino, R., Edidin, M. and Kusumi, A. GPI-anchored receptor clusters transiently recruit Lyn and Gα for temporary cluster immobilization and Lyn activation: single-molecule tracking study 1. J. Cell Biol. 177 (2007) 717-730.
  • 16. Suzuki, K.G.N., Fujiwara, T.K., Edidin, M. and Kusumi, A. Dynamic recruitment of phospholipase Cγ at transiently immobilized GPI-anchored receptor clusters induces IP3-Ca+2 signaling: single-molecule tracking study 2. J. Cell Biol. 177 (2007) 731-742.
  • 17. Kusumi, A., Subczynski, W.K., Pasenkiewicz-Gierula, M., Hyde, J.S. and Merkle H. Spin-label studies on phosphatidylcholine-cholesterol membranes: effects of alkyl chain length and unsaturation in the fluid phase. Biochim. Biophys. Acta 854 (1986) 307-317.
  • 18. Recktenwald, D.J. and McConnell, H.M. Phase equilibria in binary mixture of phosphatidylcholine and cholesterol. Biochemistry 20 (1981) 4505-4510.
  • 19. Shimshick, E.J. and McConnell, H.M. Lateral phase separation in phospholipid membranes. Biochemistry 12 (1973) 2351-2360.
  • 20. Subczynski, W.K., Widomska, J., Wisniewska, A. and Kusumi, A. Saturation recovery EPR discrimination by oxygen transport (DOT) method for characterizing membrane domains. in: Methods in Molecular Biology. Vol. 398. Lipid Rafts. (McIntosh, T.J., Ed.), Humana Press Inc., Totowa, New York, 2007, 145-160.
  • 21. Ashikawa, I., Yin, J.-J., Subczynski, W.K., Kouyama, T., Hyde, J.S. and Kusumi. A. Molecular organization and dynamics in bacteriorhodopsin-rich reconstituted membranes: Discrimination of lipid environments by the oxygen transport parameter using a pulse ESR spin-labeling technique. Biochemistry 33 (1994) 4947-4952.
  • 22. Subczynski, W.K., Wisniewska, A., Hyde, J.S. and Kusumi, A. Threedimensional dynamic structure of the liquid-ordered domain as examined by a pulse-EPR oxygen probing. Biophys. J. 92 (2007) 1573-1584.
  • 23. Subczynski, W.K., Pasenkiewicz-Gierula, M., McElhaney, R.N., Hyde, J.S. and Kusumi, A. Molecular dynamics of 1-palmitoyl-2- oleoylphosphatidylcholine membranes containing transmembrane α-helical peptides with alternating leucine and alanine residues. Biochemistry 42 (2003) 3939-3948.
  • 24. Subczynski, W.K., Lewis, R.N.A.H., McElhaney, R.N., Hodges, R.S., Hyde, J.S. and Kusumi, A. Molecular organization and dynamics of 1-palmitoyl-2- oleoylphosphatidylcholine bilayers containing a transmembrane α-helical peptide. Biochemistry 37 (1998) 3156-3164.
  • 25. Subczynski, W.K., Hopwood, L.E. and Hyde, J.S. Is the mammalian cell plasma membrane a barrier to oxygen transport? J. Gen. Physiol. 100 (1992) 69-87.
  • 26. Subczynski, W.K., Hyde, J.S. and Kusumi, A. Effect of alkyl chain unsaturation and cholesterol intercalation on oxygen transport in membranes: a pulse ESR spin labeling study. Biochemistry 30 (1991) 8578-8590.
  • 27. Subczynski, W.K., Hyde, J.S. and Kusumi, A. Oxygen permeability of phosphatidylcholine-cholesterol membranes. Proc. Natl. Acad. Sci. USA 86 (1989) 4474-4478.
  • 28. Kusumi, A., Subczynski, W.K. and Hyde, J.S. Oxygen transport parameter in membranes as deduced by saturation recovery measurements of spinlattice relaxation times of spin labels. Proc. Natl. Acad. Sci. USA 79 (1982) 1854-1858.
  • 29. Ge, M., Field, K.A., Aneja, R., Holovka, D., Baird, B. and Freed J.H. Electron spin resonance characterization of liquid ordered phase of detergent-resistant membranes from RBL-2H3 cells. Biophys. J. 77 (1999) 925-933.
  • 30. London, E. Insights into lipid raft structure and formation from experiments in model systems. Curr. Opin. Struct. Biol. 12 (2002) 480-486.
  • 31. Almeida, P.F.F., Vaz, W.L.C. and Thompson, T.E. Lateral diffusion in the liquid phases of dimyristoylphosphatidylcholine/cholesterol bilayers: a free volume analysis. Biochemistry 31 (1992) 6739-6747.
  • 32. Costa-Filho, A.J., Shimoyama, Y. and Freed, J.H. A2D-ELDOR study of the liquid ordered phase in multilamellar vesicle membranes. Biophys. J. 84 (2003) 2619-2633.
  • 33. Ge, M., Gidvani, A., Brown, H.A., Holovka, D., Baird, B. and Freed, J.H. Ordered and disordered phases coexist in plasma membrane vesicles of RBL-2H3 mast cells. Biophys. J. 85 (2003) 1278-1288.
  • 34. Veiga, M.P., Arrondo, J.L.R., Goni, F.M., Alonso, A. and Marsh, D. Interaction of cholesterol with sphingomyelin in mixed membranes containing phosphatidylcholine, studied by spin-label ESR and IR spectroscopies. A possible stabilization of gel-phase sphingolipid domains by cholesterol. Biochemistry 40 (2001) 2614-1622.
  • 35. Wolf, C. and Chachaty, C. Compared effects of cholesterol and 7- dehydrocholesterol on sphingomyelin-glycerophospholipid bilayers studied by ESR. Biophys. Chem. 84 (2000) 269-279.
  • 36. Gaffney, B.J. and Marsh, D. High-frequency, spin-label EPR of nonaxial lipid ordering and motion in cholesterol-containing membranes. Proc. Natl. Acad. Sci. USA 95 (1998) 12490-12493.
  • 37. Almeida, P.F.F., Pokorny, A. and Hinderliter, A. Thermodynamics of membrane domains. Biochim. Biophys. Acta 1720 (2005) 1-13.
  • 38. Sankaram, M.B. and Thompson, T.E. Interaction of cholesterol with various glycerophospholipids and sphingomyelin. Biochemistry 29 (1990) 10670- 10675.
  • 39. de Almeida, R.F.M., Fedorov, A. and Prieto, M. Sphingomyelin/ phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts. Biophys. J. 85 (2003) 2406-2416.
  • 40. Kusumi, A., Subczynski, W.K. and Hyde, J.S. Effects of pH on ESR spectra of stearic acid spin labels in membranes: probing the membrane surface. Fed. Proc. 41 (1982) 1394.
  • 41. Papahadjopoulos, D. Surface properties of acidic phospholipids: Interaction of monolayers and hydrated liquid crystals with uni- and bi-valent metal ions. Biochim. Biophys. Acta 163 (1968) 240-254.
  • 42. Hyde, J.S. and Subczynski, W.K. Spin-label oximetry. in: Biological Magnetic Resonance. Vol. 8. Spin labeling: theory and applications. (Berliner, L.J. and Reuben, J. Eds.), Plenum, New York, 1989, 399-425.
  • 43. Subczynski, W.K., Felix, C.C., Klug, C.S. and Hyde, J.S. Concentration by centrifugation for gas exchange EPR oximetry measurements with loop-gap resonators. J. Magn. Reson. 176 (2005) 244-248.
  • 44. Yin, J.J. and Subczynski, W.K. Effect of lutein and cholesterol on alkyl chain bending in lipid bilayers: a pulse electron paramagnetic resonance spin labeling study. Biophys. J. 71 (1996) 832-839.
  • 45. Yin, J.J., Pasenkiewicz-Gierula, M. and Hyde, J.S. Lateral diffusion of lipids in membranes by pulse saturation recovery electron spin resonance. Proc. Natl. Acad. Sci. USA 84 (1987) 964-968.
  • 46. Windrem, D.A. and Plachy, W.Z. The diffusion-solubility of oxygen in lipid bilayers. Biochim. Biophys. Acta 600 (1980) 655-665.
  • 47. Robinson, B.H., Hass, D.A. and Mailer, C. Molecular dynamics in liquid: spin lattice relaxation of nitroxide spin labels. Science 263 (1994) 490-493.
  • 48. Loura, L.M.S., Fedorov, A. and Prieto, M. Fluid-fluid membrane microheterogenity: a fluorescence resonance energy transfer study. Biophys. J. 80 (2001) 778-788.
  • 49. Subczynski, W.K. and Kusumi, A. Effects of very small amounts of cholesterol on gel-phase phosphatidylcholine membranes. Biochim. Biophys. Acta 854 (1986) 318-320.
  • 50. Widomska, J., Raguz, M., Dillon, J., Gaillard, E.R. and Subczynski, W.K. Physical properties of the lipid bilayer membrane made of calf lens lipids: EPR spin labeling studies. Biochim. Biophys. Acta 1768 (2007) 1454-1465.
  • 51. Widomska, J., Raguz, M. and Subczynski, W.K. Oxygen permeability of the lipid bilayer membrane made of calf lens lipids. Biochim. Biophys. Acta 1768 (2007) 2635-2645.
  • 52. Collado, M.I., Goni, F.M., Alonso, A. and Marsh, D. Domain formation in sphingomyelin/cholesterol mixed membranes studied by spin-label electron spin resonance spectroscopy. Biochemistry 44 (2005) 4911-4918.
  • 53. Hubbell, W.L. and McConnell, H.M. Molecular motion in spin-labeled phospholipids and membranes. J. Am. Chem. Soc. 93 (1971) 314-326.
  • 54. Gaffney, B.J. Principal considerations for the calculation of order parameters for fatty acid or phospholipid spin labels in membranes. in: Spin labeling: theory and applications. (Berliner, L.J. Ed.), Academic Press, New York, 1976, 567-571.
  • 55. Koynova, R. and Caffrey, M. Phases and phase transitions of the sphingolipids. Biochim. Biophys. Acta 1255 (1995) 213-236.
  • 56. Ramstedt, B. and Slotte, J.P. Sphingolipids and the formation of sterolenriched ordered membrane domains. Biochim. Biophys. Acta 1758 (2006) 1945-1956.
  • 57. Guo, W., Kurze, V., Huber, T., Afdhal, N.H., Beyer, K. and Hamilton, J.A. A solid-state NMR study of phospholipid-cholesterol interactions: sphingomyelin-cholesterol binary systems. Biophys. J. 83 (2002) 1465-1478.
  • 58. Ohvo, H. and Slotte, J.P. Cyclodextrin-mediated removal of sterols from monolayers: effects of sterol structure and phospholipids on desorption rate. Biochemistry 35 (1996) 8018-8024.
  • 59. Slotte, J.P. Enzyme-catalyzed oxidation of cholesterol in mixed phospholipid monolayers reveals stoichiometry at which free cholesterol clusters disappear. Biochemistry 31 (1992) 5472-5477.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.