PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1999 | 04 | 2 |

Tytuł artykułu

Interaction of spectrin with phospholipids is inhibited by isolated erythrocyte ankyrin. A monolayer study

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
It was previously found (Białkowska, K., Zembroń, A. and Sikorski, A. F. (1994) Biochim. Biophys. Acta 1191, 21-26.) that isolated erythrocyte ankyrin inhibited interaction of spectrin with phospholipid liposomes, mainly those prepared from lipid mixtures containing aminophospholipids. In this communication we report on the effect of isolated ankyrin on red blood cell spectrin interaction with phospholipids in monolayers. Our data indicate that spectrin interaction with monolayers containing PE and, to a smaller extent, PS is sensitive to inhibition by ankyrin while interaction with monolayers containing only PC is not. Tetrameric spectrin affects monolayer surface pressure similarly to the heterodimer. However, an interaction of tetrameric spectrin with phospholipids was much more effectively inhibited by purified ankyrin indicating that one site per spectrin tetramer engaged in this interaction. When interactions of purified individual spectrin subunits (α or β) with phospholipid monolayers was studied, the β-subunit caused a strong, saturable effect on the surface pressure of the PE/PC monolayer, in contrast to the α-chain which induced much smaller and monotonic changes on the surface pressure of the same monolayer. Also interactions of the β-subunit with amino-phospholipids/PC monolayers were more sensitive to inhibition by ankyrin than those with native αβ-heterodimer of spectrin, e.g. threefold lower concentration of ankyrin was necessary to induce the same effect, while interaction of the α-subunit with phospholipid monolayers was entirely insensitive to ankyrin. Phosphorylation of spectrin in vitro with either cAMP-dependent protein kinase, or metabolically in intact cells, induced a decrease in the effect of either dimer or tetramer on the surface pressure of phospholipid monolayers. The sensitivity of this interaction to ankyrin was also greatly diminished. When isolated ankyrin was phosphorylated by the same cAMP-dependent protein kinase its ability to compete with phospholipid for spectrin was also diminished. The described effects may indicate a physiological significance of spectrin’s interaction with phospholipids, particularly in situations when there is not enough functional ankyrin to accommodate all spectrin molecules in the membrane.

Wydawca

-

Rocznik

Tom

04

Numer

2

Opis fizyczny

p.203-218,fig.

Twórcy

autor
  • University of Wroclaw, Przybyszewskiego 63-77, 51-148 Wroclaw, Poland
autor

Bibliografia

  • 1. Hartwig, J. Actin-Binding proteins 1: Spectrin Superfamily. Protein Profile 2, (1995) 703-800.
  • 2. Byers, T. J. and Branton, D. Visualization of the protein associations in the erythrocyte membrane skeleton. Proc. Natl. Acad. Sci. USA 82 (1985) 6153-6157.
  • 3. Delaunay, J. Red Cell Membrane. Structure and Function. Red Cell Biochemistry, Vol. 6. Molecular basis of major human blood group antigens. Cartron, J.-P. and Rouger P. eds. Plenum Press New York, 1995.
  • 4. Bennett, V. Ankyrins. Adaptors between diverse plasma membrane proteins and the cytoplasm. J. Biol. Chem. 267 (1992) 8703-8706.
  • 5. Pinder, J. C., Chung, A., Reid, M. E. and Gratzer, W. B. Membrane attachment sites for the membrane cytoskeletal protein 4.1 of the red blood cell. Blood 82 (1993) 3482-3488.
  • 6. Marfatia, S. M., Lue, R. A., Branton, D. and Chishti, A. H. In vitro binding studies suggest a membrane-associated complex between erythroid P55, protein 4.1 and glycophorin C. J. Biol. Chem. 269 (1994) 8631-8634.
  • 7. Derick, L. M., Liu, S.-C., Chishti, A. H. and Palek, J. Protein immunolocalization in the spread erythrocyte membrane skeleton. Eur. J. Cell Biol. 57 (1992) 317-320.
  • 8. Bennett, V. and Stenbuck, P. Identification and partial purification of ankyrin, the high affinity membrane attachment site for human erythrocyte spectrin. J. Biol. Chem. 254 (1979) 2533-2541.
  • 9. Yu, J. and Goodman S. R. Syndeins: the spectrin-binding protein(s) of the human erythrocyte membrane. Proc. Natl. Acad. Sci. USA 76 (1979) 2340-2344.
  • 10. Tyler, J., Reinhardt, B. and Branton, D. Associations of erythrocyte membrane proteins. Binding of purified bands 2.1 and 4.1 to spectrin. J. Biol. Chem. 255 (1980) 7034-7039.
  • 11. Lambert, S., Yu, H., Prchal, J. T., Lawler, J., Ruff, P., Speicher, D., Cheung, M. C., Kan,Y.-W. and Palek, J. cDNA sequence for human erythrocyte ankyrin. Proc. Natl. Acad. Sci. USA 87 (1990) 1730-1734.
  • 12. Lux, S. E., John, K. E. and Bennett, V. Analysis of cDNA for human erythrocyte ankyrin indicates a repeated structure with homology to tissue differentiation and cell cycle control proteins. Nature 344 (1990) 468-471.
  • 13. Otto, E., Kunimoto, M., McLaughlin, T. and Bennett, V. Isolation and characterization of cDNA’s encoding human brain ankyrin reveal a family of alternatively spliced genes. J. Cell Biol. 114 (1991) 241-253.
  • 14. Kordelli, E., Lambert, S. and Bennett, V. AnkyrinG. A new ankyrin gene with neural-specific isoforms localized at the axonal initial segment and node of Ranvier. J. Biol. Chem. 270 (1995) 2352-2359.
  • 15. Gallagher, P., Tse, W. T., Scarpa, A. L., Lux, S. E. and Forget, B. Structure and organization of the human ankyrin-1 gene. Basis of complexity of pre-mRNA processing. J. Biol. Chem. 272 (1997) 19220-19228.
  • 16. Haest, C. W. M. Interaction between membrane skeleton proteins and the intrinsic domain of the erythrocyte membrane. Biochim. Biophys. Acta 694 (1982) 331-352.
  • 17. Sikorski, A. F. and Białkowska, K. Interaction of spectrins with membrane intrinsic domain Cell. Mol. Biol. Lett. 1 (1996) 97-104.
  • 18. Białkowska, K., Zembroń, A.and Sikorski, A. F. Ankyrin inhibits binding of erythrocyte spectrin to phospholipid vesicles. Biochim. Biophys. Acta 1191 (1994) 21-26.
  • 19. Diakowski, W., Prychidny, A., Świstak, M., Nietubyć, M., Białkowska, K., Szopa, J. and Sikorski, A. F. Brain spectrin (fodrin) interacts with phospholipids as revealed by intrinsic fluorescence and monolayer experiments. Biochem. J. 338 (1999) 83-90.
  • 20. Michalak, K., Bobrowska, M. and Sikorski, A. F. Interaction of bovine erythrocyte spectrin with aminophospholipid liposomes. Gen. Physiol. Biophys. 12 (1993) 163-170.
  • 21. Ungewickell, E. and Gratzer, W. B. Self-association of human spectrin. A thermodynamic and kinetic study. Eur. J. Biochem. 88 (1978) 379-385.
  • 22. Morrow, J. S., Haigh, W. B. J. and Marchesi, V. T. Spectrin oligomers. A structural feature of the erythrocyte cytoskeleton. J. Supramol. Struct. Cell Biochem. 17 (1981) 275-287.
  • 23. Hall, T. G. and Bennett, V. Regulatory domains of erythrocyte ankyrin. J. Biol. Chem. 262 (1987) 10537-10545.
  • 24. Yoshino, H. and Marchesi, V. T. Isolation of spectrin subunits and reassiciation in vitro. Analysis by fluorescence polarization. J. Biol. Chem. 259 (1984) 4496-4500.
  • 25. Schiebler, W., Jahn, R. and Doucet, J.-P. Characterization of synapsin I binding to small synaptic vesicles. J. Biol. Chem. 261 (1986) 8383-8390.
  • 26. Bennett, V. and Branton, D. Selective association of spectrin with the cytoplasmic surface of human erythrocyte plasma membranes. Quantitative determination with purified [32P] spectrin. J. Biol. Chem. 252 (1977) 2753- 2763.
  • 27. Juliano, R. L., Kimelberg, H. K., Papahadjopoulos, D. Synergistic effects of a membrane protein (spectrin) and Ca2+ on the Na+ permeability of phospholipid vesicles. Biochim. Biophys. Acta 241 (1971) 894-905.
  • 28. Mombers, C., DeGier, J., Demel, R. A. and Van Deenen, L. L. M. Spectrin-phospholipid interaction. A monolayer study. Biochim. Biophys. Acta 603 (1980) 52-62.
  • 29. DeWolf, C., McCauley, P., Pinder, J. C. Regulation of the Mechanical Properties of the Red Blood Cell Membrane by the Protein-Protein and Protein-Lipid Interactions. Cell. Mol. Biol. Lett. 1, (1996) 89-96.
  • 30. Marsh, D. Lateral pressure in membranes. Biochim. Biophys. Acta 1286 (1996) 183-223.
  • 31. Dixon, M. The determination of the enzyme-inhibitor constants. Biochem. J. 55 (1953) 170-171.
  • 32. Lutz, H. U. A Cyclic AMP-Dependent Phosphorylation of Spectrin Dimer. FEBS Lett. 169 (1984) 323-329.
  • 33. Manno, S., Takakuwa, Y., Nagao, T. and Mohandas, N. Modulation of erythrocyte membrane mechanical function by spectrin phosphorylation and dephosphorylation. J. Biol. Chem. 270 (1995) 5659-5665.
  • 34. Cianci, C. D., Giorgi, M. and Morrow, J. S. Phosphorylation of ankyrin down-regulates its co-operative interaction with spectrin and protein 3. J. Cell. Biochem. 37 (1988) 301-315.
  • 35. Lu, P.-W., Soong, C.-J. and Tao, M. Phosphorylation of ankyrin decreases its affinity for spectrin tetramer. J. Biol. Chem. 260 (1985) 14958-14964.
  • 36. Gooodman S. R. and Weidner, S. A. Binding of spectrin α2-β2 tetramers to human erythrocyte membranes. J. Biol. Chem. 255 (1980) 8082-8086.
  • 37. Rudloff, V., Herbst, F., Passing, R. and Schubert, D. Isolation and properties of spectrin protomers. Prog. Clin. Biol. Res. 91 (1982) 107-119.
  • 38. Calvert, R. , Bennett, P., Gratzer, W. B. Properties of the Subunits of Human Spectrin. Eur. J. Biochem. 107 (1980) 355-361.
  • 39. Harris, H. W. J. and Lux, S. E. Structural characterization of the phosphorylation sites of human erythrocyte spectrin. J. Biol. Chem. 255 (1980) 11512-11520.
  • 40. Bodine, D. M., Birkenmeier, C. S. and Barker, J. E. Spectrin deficient inherited hemolytic anemias in the mouse: characterization by spectrin synthesis and mRNA activity in reticulocytes. Cell 37 (1984) 721-729.
  • 41. Lazarides, E. and Woods, C. Biogenesis of the red blood cell membrane-skeleton and the control of erythroid morphogenesis. Annu. Rev. Cell Biol. 5 (1989) 427-452.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-78cd548f-48ef-47e7-a24b-5e3a570a4d3e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.