EN
Experiments performed under controlled conditions showed that level of PPFD (photosynthetic photon flux density) during early seedlings growth (preceding cold acclimation at +2 °C) was not the key factor for the development of frost resistance. It did not modify the beneficial effects of prehardening (Rapacz 1997, in this issue) at moderately low (+12 °C) day temperature. Now I have shown that the increase of PPFD may replace to some extent prehardening in the development of frost resistance. It was particularly seen in non-prehardened plants, which had been grown under warm-day (+20 °C) conditions. Prehardening performed under controlled conditions, as well as seedlings growth under natural autumn conditions in the field, allowed to maintain a high net-photosynthesis rate at chilling temperatures. A net-photosynthesis rate during cold acclimation at +2 °C corresponded well with higher frost resistance. As a result, seedlings non subjected to prehardening and grown before cold acclimation under low PPFD acclimated better, if the cold treatment was applied only at nights (+20/2 °C day/night). Only under such conditions the photosynthetic rate was sufficiently high to allow plants to reach a higher level of frost resistance. All other plants acclimated better when they were exposed to the hardening temperature continuously during days and nights (+2/2 °C day/night).