PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1992 | 43 | 4 |

Tytuł artykułu

The endothelium-dependent and the endothelium-independent vasodilators in the isolated, perfused guinea pig heart

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The endothelium-dependent (acetylcholine, bradykinin, substance P) and the endothelium-independent (gliceryl trinirate, 3-morpholinsydnominine, sodium nitroprusside) vasodilators were studied in the Langendorff-perfused heart of the guinea pig. The involvement of prostanoids and EDRF in the endothelium-dependent responses were assessed by using indomethacin, an inhibitor of cyclooxygenase, and NG -nitro-L-Arginine, an inhibitor of NO synthase. The endothelium-independent agents were used as reference compounds. Both indomethacin and NG -nitro- L-Arginine elevated significantly baseline coronary perfusion pressure, indicating that prostanoids (most likely PGI₂ and PGE₂ ) and EDRF modulate the resting tone of the guinea pig coronary circulation. NG-nitro-L-Arginine, but not indomethacin, considerably reduced receptor-stimulated responses. It is concluded that acetylcholine, bradykinin or substance P-induced vasodilation is mediated by EDRF. In contrast, prostanoids do not contribute to endothelium-dependent responses. In addition, short-term tachyphylaxis to bolus injection of gliceryl trinitrate but not of sodium nitroprusside was demonstrated, suggesting that this preparation may be of value for studying nitrate tolerance.

Wydawca

-

Rocznik

Tom

43

Numer

4

Opis fizyczny

p.353-365,fig.

Twórcy

autor
  • University School of Medicine, 31-531 Krakow, Grzegorzecka 16, Poland

Bibliografia

  • 1. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288: 373-376.
  • 2. Rapoport RM, Murad F. Endothelium-dependent and nitrovasodilator-induced relaxation of vascular smooth muscle: role of cyclic GMP. J Cycl Nuci Prot Phosph Res 1983; 9: 281-296.
  • 3. Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987; 327: 524-526.
  • 4. Ignarro LJ, Buga GM, Wood KS, Byrns KS, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 1987; 84: 9265-9269.
  • 5. Myers PR, Minor RL, Guerra R, Bates JN, Harrison DG. Vasorelaxant properties of the endothelium-derived relaxing factor more closely resemble S-nitrosocysteine than nitric oxide. Nature 1990; 345: 161-163.
  • 6. Palmer RMJ, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988; 333: 664-666.
  • 7. Furchgott RF. The role of endothelium in the responses of vascular smooth muscle to drugs. Ann Rev Pharmacol Toxicol 1984; 24: 175-197.
  • 8. Vanhoutte PM, Rubanyi GM, Miller VM, Houston DS. Modulation of vascular smooth muscle contration by the endothelium. Ann Rev Physiol 1986; 48: 307-320.
  • 9. Amescua J L, Dusting G J, Palmer R M J, Moncada S. Acetylcholine induce vasodilation in the rabbit isolated heart through the release of nitric oxide, the endogenous nitrovasodilator. Br J Pharmacol 1988; 95: 830-834.
  • 10. Amescua J L, Palmer RMJ, de Sousa BM, Moncada S. Nitric oxide synthesized from L-arginine regulates vascular tone in the coronary circulation of the rabbit. Br J Pharmacol 1989; 97: 119-1124.
  • 11. Keim M, Schrader J. Nitric oxide release from the isolated guinea pig heart. Eur J Pharmacol 1988; 155-317-321.
  • 12. Keim M, Schrader J. Control of vascular tone by nitric oxide. Cir Res 1990; 66: 1561-1575.
  • 13. Baydoun AR, Woodward B. Effects of bradykinin in the rat isolated perfused heart: role of kinin receptors and endothelium-derived relaxing factor Br J Pharmacol 1991; 103: 1829-1833.
  • 14. Moncada S, Gryglewski RJ, Bunting S, Vane JR. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelets aggregation. Nature 1976; 263: 663-665.
  • 15. De Deckere EAM, Nugteren DH, Ten Hoor F. Prostacyclin is the major prostaglandin released from the isolated perfused rabbit and rat heart. Nature 1977; 268: 160-163.
  • 16. Schror K, Moncada S, Ubetuba FB, Vane JR. Transformation of arachidonic acid and prostaglandin endoperoxide by the guinea pig heart. Formation of RSC an prostacyclin (PGX). Eur J Pharmacol 1978; 47: 103-114.
  • 17. De Nucci G, Gryglewski RJ, Warner T, Vane JR. Receptor-mediated release of endothelium derived relaxing factor and prostacyclin from bovine aortic endothelial cells is coupled. Proc Natl Acad Sci USA 1988; 85: 2334-2338.
  • 18. Needleman P, Key SL, Denny SE, Isakson PC, Marshall GR. Mechanism and modification of bradykinin-induced coronary vasodilation. Proc Natl Acad Sci USA 1975; 72: 2060.
  • 19. Turker RK, Ercan ZS, Ersoy A, Zengil H. Inhibition by nicotine of the vasodilator effect of bradykinin: evidence for a prostacyclin-dependent mechanism. Arch Int Pharmacodyn 1982; 257: 94.
  • 20. Forstermann U, Mugge A, Alheid U, Haverich A, Frolich JC. Selective attenuation of endothelium-mediated vasodilation in atherosclerotic human coronary arteries. Cir Res 1988; 62: 185-190.
  • 21. Hintze TH, Kaley G. Prostaglandins and the control of blood flow in the canine myocardium. Cir Res 1977; 40: 313-320.
  • 22. Stewart AG, Piper PJ. Vasodilator actions of acetylcholine, A23187 and bradykinin in isolated perfused heart are independent of prostacyclin. Br J Pharmacol 1988; 95: 379-384.
  • 23. Lee L, Bruner CA, Webb RC. Prostanoids contribute to endothelium-dependent coronary vasodilation in guinea pig. Blood vessels 1990; 27: 341-351.
  • 24. Moore PK, al-Swayek OA, Chong NWS, Evans RA, Gibson A. L-NG-nitro arginine (L-NOARG), a novel, l-arginine reversible inhibitor of endothelium-dependent vasodilation on vitro. Br J Pharmacol 1990; 99: 408-412.
  • 25. Ishii K, Chang B, Kerwin JF, Huang ZJ, Murad F. NG-nitro-L-arginine: a potent inhibitor of endothelium-derived relaxing factor formation. Eur J Pharmacol 1990; 176: 219-233.
  • 26. Mulsch A, Busse R. NG-nitro-L-arginine (N⁵ [imino-(nitroamino)methyl-]-L-ornithine) impairs endothelium-dependent dilation by inhibiting cytosolic nitric oxide synthesis from L-arginine. Naunyn-Schmiedeberg’s Arch Pharmacol 1990; 341: 143-147.
  • 27. Vane JR. Inhibition of prostaglandin biosynthesis as the mechanism of action of aspirin like drugs. Adv Biosci 1973; 9: 395.
  • 28. Regoli D, Barabe J. Pharmacology of bradykinin an related kinins. Pharmacol Rev 1980; 32: 1.
  • 29. Regoli D, Rhaleb NE, Dion S, Drapeau G. New selective Bk receptor antagonist an bradykinin B2 receptor characterization. TIPS 1990; IT. 156.
  • 30. Cowan CL, Cohen RA. Two mechanisms mediate relaxation by bradykinin of pig coronafy artery: NO-dependent and -independent responses. Am J Physiol 1991; 261: H830-835.
  • 31. Pelc LR, Gross GJ, Warltier DC. Mechanism of coronary vasodilation produced by bradykinin. Circulation 1990; 83(6): 2048-2056.
  • 32. Gardiner SM, Compton AM, Bennett T, Palmer RMJ, Moncada S. Control of regional blood flow by endothelium-derived nitric oxide. Hypertension 1990; 15: 486-492.
  • 33. Vallance P, Collier J, Moncada S. Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet 1989; Oct 28: 997-1000.
  • 34. Gerristen ME, Cheli CD. Arachidonic acid and prostaglandin endoperoxide metabolism in isolated rabbit and coronary microvessels and isolated and cultivated coronary microvessel endothelial cells. J Clin Invest 1983; 72: 1658-1671.
  • 35. Noll G, Buhler FR, Yang Z, Luscher TF. Different potency of endothelium-dependent relaxing factors against thromboxane, endothelin, and potassium chloride in intramyocardial porcine coronary arteries. J Cardio vase Pharmacol 1991; 18: 120-126.
  • 36. Moncada S, Palmer RMJ, Higgs EA. Biosynthesis of nitric oxide from L-arginine: a pathway for the regulation of cell function and communication. Biochem Pharmacol 1989; 38: 1709-1715.
  • 37. Trybulec M, Dudek R, Radziszewski W, Swierkosz T, Zembowicz A. Quantification of the potencies of EDRF-releasers from isolated rabbit aortic strips. Acta Physiol Pol 1990: 41: l-4.
  • 38. Schror K, Forster S, Woditsch I. On-line measurement of nitric oxide release from organic nitrates in the intact coronary circulation. Naunyn Schmiedebergs Arch Pharmacol 1991; 344(2): 240-246.
  • 39. Christie MI, Lewis MJ. A comparison of endothelium-derived relaxing factor activity in the coronary and renal arteries of the pig. Eur J Pharmacol 1991; 202: 143-149.
  • 40. Crossman DC, Larkin SW, Fuller RW, Davies GJ, Maseri A. Substance P dilates epicardial coronary arteries and increase coronary blood flow in humans. Cir 1989; 80: 475-484.
  • 41. Forstermann U, Warmuth G, Dudel C, Alhied U. Formation and functional importance of endothelium-derived relaxing factor and prostaglandins in the microcirculation. Z Kardiol 1989; Suppl 6: 85-91.
  • 42. Ignarro LJ, Lippton H, Edwards JC et al. Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: Evidence for the involvement of S-nitrosothiols as active intermediates. J Pharmacol Exp Ther 1981; 218: 739-749.
  • 43. Fung HJ, Chong S, Kowaluk E. Mechanism of nitrate action an vascular tolerance. EurHeart J 1989; 10(suppl A): 2-6.
  • 44. Feelisch M, Kelm M. Biotransformation of organic nitrates to nitric oxide by vascular smooth muscle and endothelial cells. Biochem Biophys Res Commun 1991; 180: 286- 293.
  • 45. Schror K, Forster S, Woditsch I, Schroder H. Generation of NO from molsidomine (SIN-1) in vitro an its relationship to changes in coronary vessel tone. J Cardiovasc Pharmacol 1989; 14(Suppl 11): 29-34.
  • 46. Gryglewski RJ, Zembowicz A, Salvemini D, Taylor GW, Vane JR. Modulation of the pharmacological actions of nitrovasodilators by methylene blue and pyocyanin. Br J Pharmacol 1992; 196: 838-845.
  • 47. Needleman P, Jakschik B, Johnson EM. Sulfhydryl requirement for relaxation of vascular smooth muscle. J Pharmacol Exper Ther 1973; 187: 324-331.
  • 48. Needleman P, Jonson EM. Mechanism of tolerance development to organic nitrates. J Pharmacol Exp Ther 1973; 184: 709-715
  • 49. Axelsson KL, Karlsson JO. Nitroglycerin tolerance in vitro: effect on cGMP turnover in vascular smooth muscle. Acta Pharmacol Toxicol Copenh 1984; 55: 203-210.
  • 50. Forster S, Woditsch I, Schroder H, Schror H. Reduced nitric oxide release causes nitrate tolerance in the intact coronary circulation. J Cardiovasc Pharmacol 1991; 17: 867-872.
  • 51. Boesgaard S, Petersen JS, Aldershvile J, Poulsen HE, Flachs H. Nitrate tolerance: effect of thiol supplementation during prolonged nitroglycerin infusion in an in vivo rat model. J Pharmacl Exp Ther 1991; 258: 851-856.
  • 52. Parker JO, Farrel B, Lahey KA, Rose BF. Nitrate tolerance: The lack of effect of N-acetylcysteine. Circulation 1987; 76: 572-576.
  • 53. Munzel T, Holtz J, Mulsch A, Stewart DJ, Bessenge E. Failure of the sulfhydryl donor N-acetylcysteine (NAC) to reverse nitrate tolerance in large epicardial arteries and the venous capacitance system of the dog. Z Kariol 1989; 78 (Suppl 2): 26-8.
  • 54. Holtz J, Munzel T, Stewart DJ, Bessenge E. Nitrate action on epicardial coronary arteries an tolerance: new aspects based on long term glyceryl trinitrate infusion in dogs. Eur Heart J 1989; 10 (Suppl F): 127-133.
  • 55. Dupuis J, Lalonde G, Lemieux R, Rouleau JL. Tolerance to intravenous nitroglycerin in patients with congestive heart failure: role of increased intravascular volume, neurohumoral activation an lack of prevention with N-acetylcysteine. J Am Coll Cardiol 1990; 16: 923-931.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-77596f24-b7a9-49dc-bb86-739fdb4132b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.