PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1996 | 01 | 1 |

Tytuł artykułu

Do shape transformations in erythrocytes reflect the flip rate of amphiphilic compounds?

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
It has been shown that the time course of echinocyte to discocyte transformation caused by exogenous phospholipids is an accurate measure of the flip rate of the phospholipids in the lipid bilayer [1,2]. In order to explore whether shape changes in erythrocytes are indicative of flip rates of water- soluble amphiphiles, the time course of shape changes caused by a large number of amphiphiles was studied. In case of amphiphiles inducing echinocyte to discocyte or discocyte to stomatocyte transformation it is proposed that the time course of shape transformation may be indicative of the flip rate of the amphiphiles. The relevance of using shape changes in erythrocytes as a tool to estimate flip rates of amphiphiles is discussed.

Wydawca

-

Rocznik

Tom

01

Numer

1

Opis fizyczny

p.3-14

Twórcy

  • Abo Akademi University, Biocity, SF-20520, Abo-Turku, Finland
autor

Bibliografia

  • 1. Daleke, D.L. and Huestis, W.H. Incorporation and translocation of aminophospholipids in human erythrocytes. Biochemistry 24 (1985) 5406-5416.
  • 2. Daleke, D.L. and Huestis, W.H. Erythrocyte morphology reflects the transbilayer distribution of incorporated phospholipids. J. Cell. Biol. 108 (1989) 1375-1385
  • 3. Sheetz, M.P. and Singer, S.J. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc. Natl. Acad. Sci. 71 (1974) 4457-4461.
  • 4. Sheetz, M.P. and Singer, S.J. Equilibrium and kinetic effects of drugs on the shapes of human erythrocytes. J. Cell. Biol. 70 (1976) 247-251.
  • 5. Zachowski, A. and Devaux, P.F. Transmembrane movements of lipids. Experientia 46 (1990) 644-656.
  • 6. Devaux, P.F. Protein involvement in transmembrane lipid asymmetry. Annu. Rev. Biophys. Struct. 21 (1992) 417-439.
  • 7. Le Maire, M., Moller, J.V. and Champeil, P. Binding of a nonionic detergent to membranes: Flip-flop rate and location on the bilayer. Biochemistry 26 (1987) 4803-4810.
  • 8. Classen, J., Deuticke, B. and Haest, C.W.M. Nonmediated flip-flop of phospholipid analogues in the erythrocyte membrane as probed by palmitoylcarnitine: Basic properties and influence of membrane modification. J. Membr. Biol. 111 (1989) 169- 178.
  • 9. Isomaa, B., Hägerstrand , H. and Paatero, G. Shape transformations induced by amphiphiles in erythrocytes. Biochim. Biophys. Acta 899 (1987) 93-103.
  • 10. Hägerstrand, H. and Isomaa, B. Amphiphile-induced antihaemolysis is not causally related to shape changes and vesiculation. Chem.-Biol. Interactions 79 (1991) 335-347.
  • 11. Hägerstrand, H. and Isomaa, B. Morphological characterization of exovesicles and endovesicles released from human erythrocytes following treatment with amphiphiles. Biochim. Biophys. Acta 1109 (1992) 117-126.
  • 12. Isomaa, B., Hägerstrand, H., Paatero, G. and Engblom, A.C. Permeability alterations and antihaemolysis induced by amphiphiles in human erythrocytes. Biochim. Biophys. Acta 860 (1986) 510-524.
  • 13. Hägerstrand, H. Shape changes and vesiculation induced by water-soluble amphiphiles in erythrocytes. (1994) Doctoral thesis, Åbo Akademi University.
  • 14. Deuticke, B., Grebe, R. and Haest, C.W.M. in: Blood Cell Biochemistry. Erythroid cells (Harris, J.R., ed) (1990) 475-529, Plenum Publishing Corporation, New York.
  • 15. Henseleit, U., Plasa, G. and Haest, C. Effects of divalent cations on lipid flip-flop in the human erythrocyte membrane. Biochim. Biophys. Acta 1029 (1990) 127-135.
  • 16. Schwichtenhövel, C., Deuticke, B. and Haest, C.W.M. Alcohols produce reversible and irreversible acceleration of phospholipid flip-flop in the human erythrocyte membrane. Biochim. Biophys. Acta 1111 (1992) 35-44.
  • 17. Bhamidipati, S.P. and Hamilton, J.A. Interactions of lyso 1-palmitoylphosphatidylcholine with phospholipids: a 13C and 31P NMR study. Biochemistry 34 (1995) 5666-5677.
  • 18. Cabral, D.J., Small, D.M., Lilly, H.S. and Hami Hong, J.A. Transbilayer movement of bile acids in model membranes. Biochemistry 26 (1987) 1801-1804.
  • 19. Zachowski,A.Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem. J. 294 (1993) 1-14.
  • 20. Bröring, K., Haest, C.W.M. and Deuticke, B. Translocation of oleic acid across the erythrocyte membrane. Biochim. Biophys. Acta 986 (1989) 321-331.
  • 21. Kamp, F. and Hamilton, J.A.pH gradients across phospholipid membranes caused by fast flip-flop of un-ionized fatty acids. Proc. Natl. Acad. Sci. 89 (1992) 11367-11370.
  • 22. Elferink, J.G.R. The asymmetric distributionof chlorpromazineand its quaternary analogue over the erythrocyte membrane. Biochem. Pharm. 26 (1977) 2411-2416.
  • 23. Packham, N.K. and Jackson, J.B. Transport of local anaesthetics across chromatophore membranes. Biochim. Biophys. Acta 546 (1979) 142-156.
  • 24. Mayer, L.D., Bally, M.B., Hope, M.J. and Cullis, P.R. Uptake of dibucaine into large unilamellar vesicles in response to a membrane potential. J. Biol. Chem. 260 (1985) 802-808.
  • 25. Sweet, W.D., Wood, W.G. and Schroeder, F. Charged anesthetics selectively alter plasma membrane order. Biochemistry 26 (1987) 2828-2835.
  • 26. Svetina, S. and Zeks, B. Membrane bending energy and shape determination of phospholipid vesicles and red blood cells. Eur. Biophys. J. 17 (1989) 101-111.
  • 27. Schneider, E., Haest, C.W.M., Plasa, G. and Deuticke, B. Bacterial cytotoxins, amphotericin B and local anesthetics enhance transbilayer mobility of phospholipids in erythrocyte membrane. Consequences for phospholipid asymmetry. Biochim. Biophys. Acta 855 (1986) 325-336.
  • 28. Rosso, J., Zachowski, A and Devaux, P.F. Influence of chlorpromazine on the transverse mobility of phospholipids in the human erythrocyte membrane: relation to shape changes. Biochim. Biophys. Acta 942 (1988) 271-279.
  • 29. Schrier, S.L., Chiu, D.T-Y, Yee, M., Sizer, K. and Lubin, B. Alteration of membrane phospholipid bilayer organization in human erythrocytes during drug-induced endocytosis. J. Clin. Invest. 72 (1983) 1698-1705.
  • 30. Schrier, S.L., Zachowski, A. and Devaux, P.F. Mechanisms of amphiphat-induced stomatocytosis in human erythrocytes. Blood 79 (1992) 782-786.
  • 31. Hägerstrand, H. and Isomaa, B. Vesiculation induced by amphiphiles in erythrocytes. Biochim. Biophys. Acta 982 (1989) 179-186.
  • 32. Hägerstrand, H. and Isomaa, B. Lipid and protein composition of exovesicles released from human erythrocytes following treatment with amphiphiles. Biochim. Biophys. Acta 1190 (1994) 409-415.
  • 33. Fujii, T. and Tamura, A. Dynamic behavior of amphiphilic lipids to penetrate into membrane of intact human erythrocytes and to induce change in the cell shape. Biomed. Biochim. 42 (1983) 81-85.
  • 34. Fujii, T., Tamura, A. and Yamane, T. Trans-bilayer movement of added phosphatidylcholine and lysophosphatidylcholine species with various acyl chain lengths in plasma membrane of intact human erythrocytes. J. Biochem. 98 (1985) 1221-1227.
  • 35. Tamura, A., Sato, T. and Fujii, T. Recovery of human erythrocytes from the echinocytic shape induced by added choline-phospholipids is dependent on the acyl chain length. Cell. Biochem. Funct. 5 (1987) 167-173.
  • 36. Alhanathy, E. and Sheetz, M.P. Control of the erythrocyte membrane shape: Recovery from the effect of crenating agents. J. Cell. Biol. 91 (1981) 884-888.
  • 37. Sheetz, M.P. and Alhanathy, E. Bilayer sensor model of erythrocyte shape control. Ann. N.Y. Acad. Sci. 416 (1983) 58- 65.
  • 38. Frenkel, E.J., Kuypers, F.A., Op den Kamp, J.A.F., Roelofsen, B and Ott, P. Effect of membrane cholesterol on dimyristoylphosphatidylcholine-induced vesiculation of human red blood cells. Biochim. Biophys. Acta 855 (1986) 293-301.
  • 39. Sims, P.J., Wiedmer, T., Esmon, C.T., Weiss, H.J. and Shattil, S.J. Assembly of the platelet prothrombinase complex is linked to vesiculation of the platelet plasma membrane. J. Biol. Chem. 264 (1989) 17049-17057.
  • 40. Comfurius, P., Senden, J.M.G., Tilly, R.H.J., Schroit, A.J., Bevers, E.M. and Zwaal, R.F.A. Loss of membrane phospholipid asymmetry in platelets and red cells may be associated with calcium-induced shedding of plasma membrane and inhibition of aminophospholipid translocase. Biochim. Biophys. Acta 1026 (1990) 153-160.
  • 41. Fujii, T., Sato, T., Tamura, A., Wakatsuki, M. and Kanaho, Y. Shape changes of human erythrocytes induced by various amphiphatic drugs acting on the membrane of the intact cell. Biochem. Pharmacol. 28 (1979) 613-620.
  • 42. Matayoshi, E.D. Distribution of shape-changing compounds across the red cell membrane. Biochemistry 19 (1980) 3414- 3422.
  • 43. Ortwein, R., Oslender-Kohnen, A. and Deuticke, B. Band 3, the anion exchanger of the erythrocyte membrane, is also a flippase. Biochim. Biophys. Acta 1191 (1994) 317-323.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-76517a0d-5ea2-4fdf-9026-88aca1efa27c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.