Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 45 | 2 |
Tytuł artykułu

Effect of the magnetic field on the biological clock in Penicillium claviforme

Treść / Zawartość
Warianty tytułu
Języki publikacji
Cultures of Penicillium claviforme were grown in a magnetic field (60-70 mT) for 12 days under constant light or constant darkness. In light, the magnetic field affected the length of the rhythm period, which was at first somewhat shortened and later prolonged (24 h —> 24 h —> 36 h —> 36 h). In darkness, activation of the biological clock was manifested in the rhythm of the formation of coremia rings. The period of induced rhythm was different from that induced in light, representing a multiple of the 24 h period (96 h —> 96 h —> 96 h). The magnetic field distinctly affected the morphology of the newly formed coremia, which were identical in light and in darkness. In the applied conditions the magnetic field replaced the inductive effect of light, activating the expression of the biological clock in darkness. This is the first time that a magnetic field has been used to replace the inductive effect of light.
Opis fizyczny
  • University of Rzeszow, Cwiklinskiej 2, 35-601 Rzeszow, Poland
  • Al-Qodah Z. 2000. Continuous production of antibiotics in an airlift fermentor field. Applied Biochemistry and Biotechnology 87: 37-55.
  • Al-Qodah Z, and Lafi W. 2001. Modeling of antibiotics production in magneto three-phase airlift fermenter. Biochemical Engineering Journal 7: 7-16.
  • Alexander MP, and Doijode SD. 1995. Electromagnetic field: a novel tool to increase germination and seedling vigour of conserved onion (Allium cepa) and rice (Oryza sativa) seeds with low viability. Plant Genetic Resources Newsletter 104: 1-5.
  • Aschoff J. [ed.]. 1965. Circadian clocks. North-Holland Publ. Co., Amsterdam.
  • Bradford KJ. 1990. A water relations analysis of seed germination rates. Plant Physiology 94: 840-849.
  • Bünning E. 1953. Entwicklung und Bewegungsphysiologie der Pflanze. 3rd edition. Springer Verlag, Berlin.
  • Celestino C, Picazo ML, Toribio M, Alvare-Ude JA, and Bardasano JL. 1998. Influence of 50 Hz electromagnetic fields on recurrent embryogenesis and germination of cork oak somatic embryos. Plant Cell Tissue and Organ Culture 54: 65-69.
  • Dobson JST, Pierre T, Weiser HG, and Fuller M. 2000. Changes in paroxysmal brainwave patterns of epileptics by weakfield magnetic stimulation. Bioelectromagnetics 21: 423-430.
  • FELDMAN J, and Dunlap CJ. 1983. Neurospora crassa: A unique system for studying circadian rhythms. Photochemistry and Photobiology 7: 319-368.
  • Fiema J, and Filek M. 1998. Effect of magnetic fields on the growth of mycelium of Aspergillus giganteus mut. alba. Conferences’ materials and proceedings, section 51, convention Polish Botanical Association. Gdańsk 1998, 137.
  • Galt S, Sandblom J, Hamnerius Y, Hjerik P, Saalman E, and Nardon B. 1993. Experimental search for combined AC, DC magnetic field effects. Bioelectromagnetics 14: 315-327.
  • Garcia Reina F, and Arza Pascual LD. 2001. Influence of a stationary magnetic field on water relations in lettuce seeds. Bioelectromagnetics 22: 589-595.
  • Garcia-Sancho F, and Javier P. 1994. Effects of extremely-low- frequency electromagnetic fields on ion transport in several cells. Bioenergetics 15: 6.
  • Gusakov A, Sinistyn PA, Davydkin J, Davydkin V, and Protas OV. 1996. Enhancement of enzymatic cellulose hydrolysis using a novel type of bioreactor with intensive stirring induced by electromagnetic field. Applied Biochemistry and Biotechnology 56: 141-153.
  • Jerebzoff S, and Jerebzoff-Quintin S. 1992. Oscillators and morphogenesis in fungi. In: Rensing L [ed.], Oscillations and morphogenesis. M. Dekker Inc., New York.
  • Lednev VV. 1991. Possible mechanism for the influence of weak magnetic fields on biological systems. Bioelectromagnetics 12: 71-75.
  • Lindström E, Lindström O, Berglund A, Lundgrend E, and Mild KH. 1995. Intracellular calcium oscillation in a T-Cell line after exposure to extremely-low-frequency-magnetic fields with variable frequencies and flux densities. Bioelectromagnetics 16: 41-47.
  • Picazo ML, De Miguel MP, Royuela M, Paniagua R, and Bardasano JL. 1996. ELF magnetic fields and protein changes in mouse skeletal muscle. Electro- and Magnetobiology 15: 197-207.
  • Piskorz B. 1967. Investigation on the action of light on the growth and development of Penicillium claviforme Bainier. Acta Societatis Botanicorum Poloniae 36: 677-698.
  • Piskorz-Binczycka B. 1995. The endogenous rhythmic sporulation process in the representatives of Penicillium clavigerum section. Polish Academy of Sciences Department of Plant Physiology, Cracow (in Polish).
  • Piskorz-Bińczycka B, and Jerebzoff S. 1987. Endogenous light- energy-dependent rhythm of zonation in Penicillium claviforme Bainier. Physiologia Plantarum 70: 163-167.
  • Piskorz-Bińczycka B, Jerebzoff S, and Jerebzoff-Quintin S. 1989. Asparagine and regulations of photoinduced rhythm in Penicillium claviforme. Physiologia Plantarum 76: 315- 318.
  • Pittman UJ. 1963. Magnetism and plant growth I. Effect of germination and early growth of cereal seeds. Canadian Journal of Plant Science 43: 513-518.
  • Pittman UJ, and Ormrod DP. 1970. Physiological and chemical features of magnetically treated winter wheat seeds and resultant seedlings. Canadian Journal of Plant Science 50: 211-217.
  • Ramchand CN, Priyadarshini P, Kopcansky P, and Mehta RV. 2001. Application of magnetic fields in medicine and biotechnology. Indian Journal of Pure and Applied Physics 39: 683-686.
  • Rochalska M. 1997. Wpływ zmiennego pola magnetycznego na kiełkowanie nasion kukurydzy (Zea mays L.) w niskiej temperaturze. Rocznik Nauk Rolniczych 112/64: 91-99.
  • Seong S, and Park TH. 2001. Swimming characteristics of magnetic bacterium, Magnetospirillum sp. AMB-1, and implications as toxicity measurement. Biotechnology and Bioengineering 76: 11-16.
  • Sweeney BM. 1969. Rhythmic phenomena in plants. Academic Press, London - New York.
  • Tan-Chi Huang, Jenn Tu, Te-Jin Chow, and Tsung-Hsien Chen. 1990. Circadian rhythm of prokaryote Synechococcus sp. RF-1. Plant Physiology 92: 531-533.
  • Yost MG, and Liburdy RP. 1992. Time-varying and static magnetic fields act in combination to alter calcium signal transduction in the lymphocyte. Federation of European Biochemical Societies Letter 296: 117-122.
  • Zhang S, Wei W, Zhang J, Mao Y, and Liu S. 2002. Effect of static field on growth of Escherichia coli and relative response model of series piezoelectric quartz crystal. Analyst 127: 337-377.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.