PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 14 | 5 |

Tytuł artykułu

The problem of water exchange by living cells in the light of mechanistic transport equations

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Each living cell must, while performing its life functions, constantly exchange water with its surroundings. This occurs through the cell membrane. In the present paper, we have made an attempt to explain the biophysical basis of this water exchange, realized under stationary conditions, i. e. at constant cell volume. For the investigation, the mechanistic equations for membrane transport have been applied. It has been demonstrated that each living cell which subsists under stationary conditions is capable of water absorption and simultaneous water removal to its surroundings. Water absorption is osmosis-driven, while water removal is driven by the mechanical pressure difference (the turgor pressure). These are new, and very significant, research results. This stationary water exchange cannot be explained on the basis of thermodynamic transport equations.

Wydawca

-

Rocznik

Tom

14

Numer

5

Opis fizyczny

p.605-611,ref.

Twórcy

autor
  • Swietokrzyska Academy, Swietokrzyska 15, 25-406 Kielce, Poland
autor
autor
autor

Bibliografia

  • 1. ACKERMAN E. Biophysical Science. Prentice-Hall, Inc. Englewood Cliffs, New Jersey, pp. 362, 1962.
  • 2. AGREE P., BROWN D., NIELSEN S. Aquaporin water channels: unanswered questions and unresolved controversies. Current Opinion in Cell Biology 17, 472, 1995.
  • 3. ALBERTS B., BRAY D., JOHNSON A., LEWIS J., RAFF M., ROBERTS K., WALTER P. Essential Cell Biology. Garland Publishing, Inc. New York and London, pp. 347, 1998.
  • 4. BRAHM J. Diffusional water permeability of human erythrocytes and their ghosts. J. Gen. Physiol. 79, 791, 1982.
  • 5. WOLF M. B. A simulation study of the anomalous osmotic behaviour of red cells. J. Theor. Biol. 83, 687, 1980.
  • 6. CROZIER P. S., ROWLEY R. L. Molecular dynamics simulation of continuous current flow through a model biological membrane channel. Physical Review Letters 86, 2467, 2001.
  • 7. CURRY M. R., SCHACHAR-HILL B. and HILL A. E. Single water channels of aquaporin-1 do not obey the KedemKatchalsky equations. J. Membrane Biol. 181, 115, 2001.
  • 8. DISALVO A., SIDDIQI F. A. and TI TIEN H. Membrane transport with emphasis on water and nonelectrolytes in experimental lipid bilayers and biomembranes. (Benga, G., Ed.), Water Transport in Biological Membranes 1, 41,1989.
  • 9. GENNIS R. B. Biomembranes. Molecular Structure and Function. Springer-Verlag, New York, Berlin, Heidelberg, London, Tokyo, pp. 235, 1989.
  • 10. GLASER R. Einführung in die Biophysik. Veb Gustav Fischer Verlag, Jena, pp. 185-249, 59, 1971.
  • 11. HERTEL A., STEUDLE E. The function water channels in chara: The temperature dependence of water and solute flows provides evidence for composite transport and for a slippage of small organic solutes across water channels. Planta, 202, 324, 1997.
  • 12. HOUSE C. L. Water transport in cells and tissues. Edward Arnold (Publishers) LTD, pp. 36, 1974.
  • 13. KARGOL A. A mechanistic model of transport processes in porous membranes generated by osmotic and hydrostatic pressure. J. Membr. Sci. 191, 61, 2001.
  • 14. KARGOL M., KARGOL A. Mechanistic formalism for membrane transport generated by osmotic and mechanical pressure. Gen. Physiol. Biophys. 22, 51, 2003.
  • 15. KARGOL M., KARGOL A. A. Mechanistic equations for membrane substance transport and their identity with Kedem-Katchalsky equations. Biophysical Chemistry 103, 117, 2002.
  • 16. KARGOL M., KARGOL A. A. Membrane transport generated by the osmotic and hydrostatic pressure. Correlation relation for parameters Lp , σ and ω. J. Biol. Phys. 26, 307, 2000.
  • 17. KARGOL M. Mechanistic approach to membrane mass transport processes. Cellular and Molecular Biol. Letters 7, 982, 2002.
  • 18. KATCHALSKY A., CURRAN, P. F. Nonequilibrium Thermodynamics in Biophysics, Harvard University Press, Cambridge, Massachusetts, pp. 113-131, 1965.
  • 19. KEDEM O., KATCHALSKY A. Thermodynamics analysis of the permeability of biological membranes to non-electrolytes, Biochim. Biophys. Acta 27, 229,1958.
  • 20. LEVITT D. G. A new theory of transport for cell membrane pores. Biochim. Biophys. Acta 373, 115, 1974.
  • 21. MENGEL K. and KIRKBY E. A. Principles of Plant Nutrition. International Potash Institute, Werblanfen – Bern (Switzerland). 151, 1980.
  • 22. MILGRAM J. H., SOLOMON A. K. Membrane permeability equations and their solutions for red cells. J. Membr. Biol. 34, 103, 1977.
  • 23. NAŁĘCZ K. A. Transport of water through biological membranes. Postępy Biochemii. 42, 161, 1996.
  • 24. PRZESTALSKI S. Biological Membranes. PWN “Wiedza Powszechna”, Warszawa. pp. 5, 1983.
  • 25. SALISBURY F. B., ROSS C. Plant Physiology. Wadsworth Publishing Company, Inc. Belmont, California. pp. 14, 1969.
  • 26. SHA’AFI R. J. and GARY–BOBO C. M. Water and nonelectrolytes permeability in mammalian red cell membranes. (Butler, J. A. V. and Noble, D., Eds.), Progress in Biophysics and Molecular Biology, Pergamon Press, Oxford and New York. 26, 106, 1973.
  • 27. SIEBENS A. W. Cellular volume control. In: Physiology and Patho-physiology, Ed. by Seldin, D. W. and Glebisch, G., Raven Press, New York. pp. 91, 1985.
  • 28. STRYER L. Biochemistry. PWN, Warszawa. 115, 2000.
  • 29. WEINSTEIN A. M. Analysis of volume regulation in an epithelial cell model. Bulletin of Mathematical Biology. 54, 537, 1992.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-738ad351-eb61-4aef-993f-2d7897f0fcb3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.