PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 08 | 2 |

Tytuł artykułu

AFLP marker polymorphism in cucumber [Cucumis sativus L.] near isogenic lines differing in sex expression

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The AFLP technique was used to evaluate the level of polymorphism between two pairs of isogenic cucumber (Cucumis sativus L.) lines (NIL) differing in flower sex expression. The BSA techniques were also applied to find molecular markers linked to sex determination genes (dominant alleles) in those cucumber lines. Sex determination in cucumber is controlled by three main bands: F, M and Gy. The interaction of these bands is responsible for the formation of the various flower phenotypes with respect to sex in the analyzed lines: a female line 2gg with a ff/MM/gygy genotype, isogenic to a monoecious line B10 (genotype ff/MM/GyGy), and a female line Gy3 with a FF/MM/GyGy genotype, isogenic to a hermaphroditic line HGy3 (genotype FF/mm/GyGy). Using 56 combinations of AFLP primers, used for the analysis of lines 2gg and B10, gave 3794 bands, of which 155 (4.1%) were polymorphic. Ten bands distinguished gynoecious and monoecious bulks appearing at the same time in the appropriate parent; they are believed to be linked to the Gy locus. The isogenic lines Gy3 and HGy3 showed a higher level of polymorphism (14.2%). In this case, 55 combinations of primers gave 2996 reaction products, of which 430 showed variation. Twenty bands occurred in one bulk and in one parent, so they are probably associated with the M locus. Using the AFLP technique, the isogenicity of the lines was evaluated. The level of polymorphism (per pair of primer) between lines 2gg and B10 is 0.072% and is four times lower than that between the Gy3 and HGy3 lines (0.27%). The differences in the isogenicity of the lines can result from the degree of their relatedness, which may reflect the way they were derived.

Wydawca

-

Rocznik

Tom

08

Numer

2

Opis fizyczny

p.375-381

Twórcy

autor
  • Warsaw Agricultural University, Nowoursynowska 166, 02-787 Warsaw, Poland
autor

Bibliografia

  • 1.Agrama, H.A., Houssin, S.F. and Track, M.A. Cloning of AFLP markers linked to resistance to Peronosclerospora sorghi in maize. Mol. Gen. Genet. 267 (2002) 814-819.
  • 2.Bardeen, J.M., Staub, J.E., Wye, C., Antonise, R. and Peleman, J. Towards an expanded and integrated linkage map of cucumber (Cucumis sativus L.) Genome 44 (2001) 111-119.
  • 3.Kubicki, B. New sex types in cucumber and their uses in breeding work. In: XIXth International Horticultural Congress. Warszawa 11-18, September, 1974, 475-485.
  • 4.Kubicki, B. New possibilities of applying different sex types in cucumber breeding. Genetica Polon. 6 (1965) 241-250.
  • 5.Malepszy, S. and Niemirowicz-Szczytt, K. Sex determination in cucumber (Cucumis sativus) as a model system for molecular biology. Plant Sci. 80 (1991) 39-47.
  • 6.Michelmore, R.W., Paran, I. and Kesseli, R.V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA 88 (1991) 9828-9832.
  • 7.Park, Y.H., Sensoy, S., Wye, C., Antonise, R., Peleman, J. and Havey, M.J. A genetic map of cucumber composed of RAPDs, RFLPs, AFLPs, and loci conditioning resisitance to papaya ringspot and zucchini yellow mosaic viruses. Genome 43 (2000) 1003-1010.
  • 8.Pierce, L.K. and Wehner, T.C. Review of genes and linkage groups in cucumber. HortScience 25 (1990) 605-615.
  • 9.Schwarz, G., Michałek, W., Mohler, V., Wenzel, G. and Jahoor, A. Chromosome landing at the Mia locus in barley (Hordeum vulgare L.) by means of high-resolution mapping with AFLP markers. Theor. Appl. Genet. 98 (1999) 521-530.
  • 10.Scott, D.M., Manorama, C.J and Richard, M.A. Removal of polysaccharides from plant DNA by ethanol precipitation. BioTechniques 17 (1994) 274- 276.
  • 11.Scott, K.D., Ablett, E.M., Lee, L.S. and Henry, R.J. AFLP markers distinguishing an early mutant of Flame Seedless grape. Euphytica 113 (2000) 245-249.
  • 12.Staub, J.E., Serquen, F.C., and Gupta, M. Genetic markers, map construction and their application in plant breeding. HortScience 31 (1996a) 729-741.
  • 13.Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M. and Zabeau, M. AFLP: A new technique for DNA fingerprinting. Nucl. Acid Res. 23 (1995) 4407-4414.
  • 14.Wehner, T.C. Gene list for cucumber. Cucurbit Genetics Cooperative Report 20 (1997) 66-88.
  • 15.Zabeau, M. and Vos, P. Selective restriction fragment amplification: A general method for DNA fingerprinting. European Patent Application 92402629,7 (publication No. 0 534 858 A1). (1993).
  • 16.Zhang, Y. and Stommel, J.R. RAPD and AFLP tagging and mapping of Beta (B) and Beta modifier (MoB), two genes which influence β-carotene accumulation in fruit of tomato (Lycopersicon esculentum Mill.). Theor. Appl. Genet. 100 (2000) 368-375.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-72e9a3a6-c923-4efa-b10a-aed2d7874085
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.