PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 06 | 3 |

Tytuł artykułu

Proteins as the source of physiologically and functionally active peptides

Warianty tytułu

PL
Bialka jako zrodlo fizjologicznie i funkcjonalnie aktywnych peptydow

Języki publikacji

EN

Abstrakty

EN
The market of functional foods and beverages develops dynamically. Biological activities of many food components which occur naturally become an issue of many scientific and industrial interests. The structural and chemical changes occurring during the proteins processing lead to the release of bioactive peptides. Their multifunctional activity is based on their structure and other factors including e.g. hydrophobicity, charge, or microelements binding properties. This article focuses on peptides with other physiological and functional activities such as antithromobotic, antioxidative, antibacterial and antifungal, sensory, and improving those nutritional value of food.
PL
Rynek napojów i żywności funkcjonalnej rozwija się dynamicznie. Aktywność biologiczna wielu składników naturalnie występujących w żywności jest przedmiotem zainteresowania ośrodków naukowych i przemysłowych. Zmiany strukturalne i chemiczne zachodzące podczas produkcji żywności prowadzą do uwalniania bioaktywnych peptydów. Wielofunkcyjna aktywność peptydów wynika z ich struktury oraz innych czynników takich, jak hydrofobowość, ładunek, zdolność wiązania mikroelementów. W artykule skoncentrowano się na peptydach wykazujących aktywności fizjologiczne i funkcjonalne, np. przeciwkrzepliwą, antyoksydacyjną, antybakteryjną i przeciwgrzybiczą, poprawiającą właściwości sensoryczne oraz wartość odżywczą żywności.

Wydawca

-

Rocznik

Tom

06

Numer

3

Opis fizyczny

p.5-15,ref.

Twórcy

autor
  • University of Warmia and Mazury in Olsztyn, Plac Cieszynski 1, 10-726 Olsztyn-Kortowo, Poland

Bibliografia

  • Azuma M., Kojima T., Yokoyama I., Tajiri H., Yoshikawa K., Saga S., Del Carpio C.A., 1999. Antibacterial activity of multiple antigen peptides homologous to a loop region in human lactoferrin. J. Peptide Res. 54, 237-241.
  • Boman H.G., 2003. Antibacterial peptides: basic facts and emerging concepts. J. Intern. Med. 254 (3), 197-215.
  • Bradley R.L., Mansfield J.P.R., Maratos-Flier E., 2005. Neuropeptides, including neuropeptide Y and melanocortins, mediate lipolysis in murine adipocytes. Obesity Res. 13, 653-661.
  • Campagna S., Saint N., Molle G., Aumelas A., 2007. Structure and mechanism of action of the antimicrobial peptide piscidin. Biochemistry 46, 1771-1778.
  • Chan W.-M., Ma C.-Y., 1999. Modification of proteins from soymilk residue (Okara) by trypsin. J. Food Sci. 64 (5), 781-786.
  • Chan J.C.K., Li-Chan E.C.Y., 2006. Antimcrobial peptides. In: Nutraceutical proteins and peptides in health and disease. CRC Press Taylor and Francis Boca Raton, 99-137.
  • Chang M.-Ch., Lin H.-K., Peng H.-Ch., Huang T.-F., 1998. Antithrombotic effect of crotalin, a platelet membrane glycoprotein antagonist from venom of Crotalus atro. Blood 91, 5, 1582-1589.
  • Chen H.M., Muramoto K., Yamauchi F., 1995. Structural analysis of autoxidative peptides from soybean β-conglycinin. J. Agric. Food Chem. 43, 574-578.
  • Chen H.M., Muramoto K., Yamauchi F., Nokihara K., 1996. Antioxidant activity of designed peptides based on the antioxidant peptide isolated from digests of a soybean protein. J. Agric. Food Chem. 44, 2619-2623.
  • Chen H.M., Muramoto K., Yamauchi F., Fujimoto K., Nokihara K., 1998. Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of soybean proteins. J. Agric. Food Chem. 46, 49-53.
  • Clare D.A., Swaisgood H.E., 2000. Bioactive milk peptides: A prospectus. J. Dairy. Sci. 83, 6, 1187-1195.
  • Cunningham D.F., O’Connor B., 1997. Proline specific peptidases. Biochim. Biophys. Acta 1343, 160-186.
  • Desportes C., Charpentier M., Duteurtre B., Maujean A., Duchiron F., 2001. Isolation, identification, and organoleptic characterization of low-molecular-weight peptides from white wine. Am. J. Enol. Vitic. 52, 4, 376-380.
  • Dziuba J., 1997. Biologicznie i funkcjonalne aktywne peptydy [Biologically and functionally active peptides]. Przegl. Mlecz. 9, 266-269 [in Polish].
  • Dziuba J., Minkiewicz P., Nałęcz D., 1999. Biologically active peptides from plant and animal proteins. Pol. J. Food Nutr. Sci. 8/49 (I), 3-16.
  • Fricker L.D., 2005. Neuropeptide-processing enzymes: applications for drug discovery. AAPS J. 7(2), E449-E455.
  • Hansen M., Sandstrom B., Lonnerdal B. 1996. The effect of casein phosphopeptides on zinc and calcium absorption from high phytate infant diets in rat pups and Caco-2 cells. Pediatric Res. 40, 547-552.
  • Haque E., Chand R., 2006. Milk protein derived bioactive peptides. (On-line) UK: Available: http://www.dairyscience.info/bio-peptides.htm. Accessed: 17 April 2007.
  • Hiraoka T., Fukuwatari T., Imaizumi M., Fushiki T., 2003. Effects of oral stimulation with fats on the cephalic phase of pancreatic enzyme secretion in esophagostomized rats. Physiol Behav. 79(4-5), 713-717.
  • Hooven Van den H., 1995. Structure elucidation of the lantibiotic nisin in aqueous solution and in membrane-like environments. Doctoral thesis. Univesity of Nijmegen, The Netherlands.
  • Jia X., Patrzykat A., Devlin R.H., Ackerman P.A., Iwama G.K., Hancock R.E.W., 2000. Antimicrobial peptides protect coho salmon from Vibrio anguillarum infections. Appl. Environ. Microbiol. 66, 5, 1928-1932.
  • Jimenez-Corral C., Moran-Sanchez J.C., Alonso-Navarro H., 2006. Neuropeptides in Alzheimer's disease. Rev. Neurol. 42(6), 354-359.
  • Jun S.-Y., Park P.-J., Jung W.-K., Kim S.-K., 2004. Purification and characterization of an antioxidative peptide from enzymatic hydrolysate of yellowfish sole (Limanda aspera) frame protein. Eur. Food Res. Int. 219, 1, 20-26.
  • Kamei K., Takano R., Miyasaka A., Imoto T., Hara S., 1992. Amino acid sequence of sweet- taste-suppressing peptide (gurmarin) from the leaves of Gymnema sylvestre. J. Biochem. 111, 1, 109-112.
  • Kim S.K., Kim Y.T., Byun H.G, Nam K.S., Joo D.S., Shahidi F., 2001. Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Alaska pollack skin. J. Agric. Food Chem. 49(4), 1984-1989.
  • Korhonen H., Pihlanto A., 2003. Food-derived bioactive peptides: Opportunities for designing future foods. Curr. Pharm. Des. 9, 16, 1297-1308.
  • Korhonen H., Pihlanto A., 2007. Technological options for the production of health-promoting proteins and peptides derived from milk and colostrum. Curr. Pharm. Des. 13, 8, 829-843.
  • Lambrecht B.N., 2001. Immunologists getting nervous: neuropeptides, dendritic cells and T cell activation. Resp. Res. 2, 133-138.
  • Lindemann B., 2000. A taste for umami. Nature 3, 2, 99-100.
  • Lioe H.N., Takara K., Yasuda M., 2006. Evaluation of peptide contribution to the intense umami taste of Japanese soy sauces. J. Food Sci. 71(3), 277-283.
  • Liu J.R., Chen M.J., Lin C.W., 2005. Antimutagenic and antioxidant properties of milk-kefir and soymilk-kefir. J. Agric. Food Chem. 53, 489-498.
  • Luzak B., Golanski J., Rozalski M., Boncler M.A., Watala C., 2003. Inhibition of collagen- -induced platelet reactivity by DGEA peptide. Acta Biochim. Pol. 50, 4, 1119-1128.
  • Majerle A., Kidric J., Jerala R., 2003. Enhancement of antibacterial and lipopolysaccharide binding activities of a human lactoferrin peptide fragment by the addition of acyl chain. J. Antimicrobiol. Chem. 51, 1159-1165.
  • Maubois J.L., Leonil J., 1989. Biologically active peptides from milk. Lait 69, 245-269.
  • Meisel H., Schlimme E., 1996. Bioactive peptides derived from milk proteins: Ingredients for functional foods? Kieler Milchw. Forsch. 48 (4), 343-357.
  • Miquel E., Farre R., 2007. Effects and future trends of casein phosphopeptides on zinc bioavailability. Trends Food Sci. Technol. 18, 139-143.
  • Murray B.A., FitzGerald R.J., 2007. Angiotensin converting enzyme inhibitory peptides derived from food Proteins: biochemistry, bioactivity and production. Curr. Pharm. Des. 13, 8, 773-791.
  • Nathoo A.N., Moeller R.A., Westlund B.A., Hart A.C., 2001. Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species. Neurobiology 98, 24, 14000-14005.
  • Naveilhan P., Hassani H., Lucas G., Blakeman K.H., Hao J.X., Xu X.J., Wiesenfeld-Hallin Z., Thoren P., Ernfors P., 2001. Reduced antinociception and plasma extravasation in mice lack- ing a neuropeptide Y receptor. Nature 409, 25, 513-517.
  • Nichols R., 2002. The discovery of novel neuropeptides takes flight. Genome Biol. 3 (11), 1032.1-1032.2.
  • Otvos L. Jr., Bokonyi K., Varga I., Otvos B.I., Hoffmann R., Ertl H.C.J., Wade J.D., McManus A.M., Craik D.J., Bulet P., 2000. Insect peptides with improved protease-resistance protect mice against bacterial infection. Protein Sci. 9, 742-749.
  • Park J.-N., Ishida K., Watanabe T., Endoh K.-I., Watanabe K., Maurakami M., Abe H., 2002. Taste effects of oligopeptides in a Vietnamese fish sauce. Fisheries Sci. 63, 4, 921-928.
  • Parodi P.W., 2007. A role for milk proteins and their peptides in cancer prevention. Curr. Pharm. Des. 13, 8, 813-828.
  • Pena-Ramos E.A., Xiong Y.L., 2001. Antioxidative activity of whey protein hydrolysates in a liposomal system. J. Dairy Sci. 84, 2577-2583.
  • Quian Z.Y., Jolles P., Migliore-Samour D., Schoentgen F., Fiat A.M., 1995. Sheep K-casein peptides inhibit platelet aggregation. Biochim. Biophys. Acta 1244, 411-417.
  • Recio I., Slangen C.J., Visser S., 2000. Method for the production of antibacterial peptides from biological fluids at an ionic membrane. Application to the isolation of nisin and caprine lactoferricin. Lait 80, 187-195.
  • Saito T., Takaki Y., Iwata N., Trojanowski J., Saido T.C., 2003. Alzheimer's disease, neuropeptides, neuropeptidase, and amyloidpeptide metabolism. Science’s SAGE KE http://sageke. sciencemag.org/cgi/content/full/sageke;2003/3/pe1 (accessed on line: 17 April 2007).
  • Singh T.K., Young N.D., Drake M., Cadwallade K.R., 2005. Production and sensory characterization of a bitter peptide from beta-casein. J. Agric. Food Chem. 53(4), 1185-9.
  • Skiebe P., 2001. Neuropeptides are ubiquitous Chemical mediators: Using the stomatogastric nervous system as a model system. J. Exp. Biol. 204, 2035-2038.
  • So Y.L., Bok L.L., Soderhall K., 2003. Processing of an antibacterial peptide from hemocyanin of the freshwater crayfish Pacifastacus leniusculus. J. Biol. Chem. 278, 10, 7927-7933.
  • Świderski F., Waszkiewicz-Robak B., 2000. Peptydy i białka jako bioaktywne składniki żywności funkcjonalnej [Peptides and proteins as bioactive components of functional food]. Przem. Spoż. 11, 41-43 [in Polish].
  • Tam J.P., Lu Y.A., Yang J.L., 2000. Design of salt-insensitive glycine-rich antimicrobial peptides with tricystine structures. Biochemistry 39, 7159-7169.
  • Wang W., Gonzalez de Mejia E., 2005. A new frontier in soy bioactive peptides that may prevent age-related chronic diseases. Compr. Rev. Food Sci. Technol. 4, 63-78.
  • Vorland L.H., 1999. Lactoferrin: a multifunctional glycoprotein. APMIS 107, 971-981.
  • Yokomizo A., Takenaka Y., Takenaka T., 2002. Antioxidative activity of peptides prepared from okara protein. Food Sci. Technol. Res. 8, 4, 357-359.
  • Zhong L., Putnam R.J., Johnson W.C. Jr., Rao A.G., 1995. Design and synthesis of amphipathic antimicrobial peptides. Int. J. Pept. Protein Res. 45 (4), 337-347.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-714529e6-9766-4da6-9fa1-4a03088f7e82
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.