PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 49 | 3 |

Tytuł artykułu

Gene expression profiling in skeletal muscle of Holstein-Friesian bulls with single-nuclotide polymorphism in the myostatin gene 5'-flanking region

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Myostatin (GDF-8) is a key protein responsible for skeletal muscle growth and development, thus mutations in the mstn gene can have major economic and breeding consequences. The aim of the present study was to investigate myostatin gene expression and transcriptional profile in skeletal muscle of Holstein-Friesian (Black-and-White) bulls carrying a polymorphism in the 5 '-flanking region of the mstn gene (G/C transversion at position -7828). Real-time qRT-PCR and cDNA microarray revealed significantly lower mstn expression in muscle of bulls with the CC genotype, as compared to GG and GC genotypes. The direct comparison of skeletal muscle transcriptional profiles between the CC genotype and GG and GC genotypes resulted in identification of genes, of which at least some can be putative targets for myostatin. Using cDNA microarray, we identified 43 common genes (including mstn) with significantly different expression in skeletal muscle of bulls with the CC genotype, as compared to GG and GC genotypes, 15 of which were upregulated and 28 were downregulated in the CC genotype. Classification of molecular function of differentially expressed genes revealed the highest number of genes involved in the expression of cytoskeleton proteins (9), extracellular matrix proteins (4), nucleic acid-binding proteins (4), calcium-binding proteins (4), and transcription factors (4). The biological functions of the largest number of genes involved: protein metabolism and modification (10), signal transduction (10), cell structure (8), and developmental processes (8). The main identified signaling pathways were: Wnt (4), chemokines and cytokines (4), integrin (4), nicotine receptor for acetylocholinę (3), TGF-beta (2), and cytoskeleton regulation by Rho GTPase (2). We identified previously unrecognized putatively myostatin-dependent genes, encoding transcription factors (EGR1, Nf1b, ILF1), components of the proteasomal complex (PSMB7, PSMD13) and proteins with some other molecular function in skeletal muscle (ITGB1BP3, Pla2glb, ISYNA 1, TNFAIP6, MSTI, TNNT1, CALB3, CACYBP, and CTNNA1).

Słowa kluczowe

Wydawca

-

Rocznik

Tom

49

Numer

3

Opis fizyczny

p.237-250,ref.,fig.

Twórcy

autor
  • Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
autor
  • Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
  • Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland
autor
  • Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland
autor
  • Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland
autor
  • Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland

Bibliografia

  • Allen DL, Unterman TG, 2007. Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factors. Am J Cell Physiol 292: 188-199.
  • Bozon B, Davis S, Laroche SA, 2003. Requirement for the immediate early gene zif268 in reconsolidation of recognition memory after retrieval. Neuron 40: 695-701.
  • Budasz-Świderska M, Jank M, Motyl T, 2005. Transforming growth factor-1 upregulates myostatin expression in mouse C2C12 myoblasts. J Physiol Pharmacol 56 Suppl 3: 195-214.
  • Byrne KA, Wang YH, Lehnert SA, Harper GS, Mc William SM, Bruce HL, Reverter A, 2005. Gene expression profiling of muscle tissue in Brahman steers during nutritional restriction. J Anim Sci 83: 1-12
  • Cassar-Malek I, Passelaigue F, Bernard C, Léger J, Hocquette JF, 2007. Target genes of myostatin loss-of-function in muscles of late bovine fetuses. BMC Genomics 8: 63.
  • Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibé B, et al. 2006. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 38: 813-818
  • Crisa A, Marchitelli C, Savarese MS, Valentini A, 2003. Sequence analysis of myostatin promoter in cattle. Cytogenet Genome Res 102: 48-52.
  • Dunner S, Miranda ME, Amigues Y, Canon J, Georges M, Hanset R, et al. 2003. Haplotype diversity of the myostatin gene among beef cattle breeds. Genet Sel Evol 35: 103-1 18.
  • Fahmy RG, Dass CR, Sun LQ, Chesterman CN, Khachigian LM, 2003. Transcription factor Egr-1 supports FGF-dependent angiogenesis during neovascularization and tumor growth. Nat Med 9: 1026-1032.
  • Grobet L, Royo Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J,et al. 1997. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 17: 71-74
  • Grobet L, Poncelet D, Royo LJ, Brouwers B, Pirottin D, Michaux C, et al. 1998. Molecular definition of an allelic series of mutations disrupting the myostatin function and causing double-muscling in cattle. Mamm Genome 9: 210-213.
  • Hadjipavlou G, Matika O, Clop A, Bishop SC, 2088. Two single nucleotide polymorphisms in the myostatin (GDF8) gene have significant association with muscle depth of commercial Charollais sheep. Anim Genet 2008 May 6, doi: 10.1111/j. 1365-2052.2008.01734.x
  • Jank M, Zwierzchowski L, Siadkowska E, Budasz-Świderska M, Sadkowski T, Oprządek J, Motyl T, 2006. Polymorphism in the 5'flanking region of the myostatin gene affects myostatin and TGF-1 expression in bovine skeletal muscle. J Anim Feed Sci 15: 381-391.
  • Jeanplong F, Sharma M, Paterson KA, Morris CA, Kambadur R, 2000. Polymorphism in dinucleotide repeat (BTAFJ1) upstream to the bovine myostatin locus. Anim Genet 31: 340-341.
  • Joulia D, Bernardi H, Garandel V, Rabenoelina F, Vernus B, Cabello G, 2003. Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin. Exp Cell Res 286: 263-275.
  • Joulia-Ekaza D, Cabello G, 2007. The myostatin gene: physiology and pharmacological relevance. Curr Opin Pharmacol 7: 310-315.
  • Kambadur R, Sharma M, Smith TPL, Bass JJ, 1997. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genom Res 7: 910-915.
  • Klauzińska M, Zwierzchowski LM, Siadkowska E, Szymanowska M, Grochowska R, Żurkowski M, 2000. Comparison of selected gene polymorphisms in Polish Red cattle and Polish Black-and-White cattle. Anim Sci Pap Rep 18: 107-116.
  • Lehnert SA, Reverter A, Byrne KA, Wang Y, Nattrass GS, Hudson NJ, Greenwood PL, 2007. Gene expression studies of developing bovine longissimus muscle from two different beef cattle breeds. BMC DevBiol 16: 7-95.
  • Liu C, Adamson E, Mercola D, 1996. Transcription factor EGR-1 suppresses the growth and transformation of human HT-1080 fibrosarcoma cells by induction of transforming growth factor beta-1. Proc Nat Acad Sci 93: 11831-11836.
  • Liu C, Yao J, de Belle I, Huang RP, Adamson E, Mercola D, 1999. The transcription factor EGR-1 suppresses transformation of human fibrosarcoma HT1080 cells by coordinated induction of transforming growth factor-beta-1, fibronectin, and plasminogen activator inhibitor-1. J Biol Chem 274:4400-4411.
  • Lu L, Tang H, Wang JY, Wu Y, Zou L, Jiang YL, et al. 2007. Polymorphisms in the 5' regulatory region of myostatin gene are associated with early growth traits in Yorkshire pigs. Sci China Ser C-Life Sci 50: 642-647.
  • Marchitelli C, Savarese MC, Crisa A, Nardone A, Marsan PA, Valentini A, 2003. Double muscling in Marchigiana beef breed is caused by a stop codon in the third exon of myostatin gene. Mamm Genome 14: 392-395.
  • McFarlane C, Langley B, Thomas M, Hennebry A, Plummer E, Nicholas G, et al. 2005. Proteolytic processing of myostatin is auto-regulated during myogenesis. Dev Biol 283: 58-69.
  • McPherron AC, Lawler AM, Lee SJ, 1997. Regulation of skeletal muscle mass by new TGF-ß superfamily member. Nature 387: 83-90.
  • McPherron AC, Lee SJ, 1997. Double muscling in cattle due to mutations in the myostatin gene. Proc Nat Acad Sci USA 94: 12457-12461.
  • Mosher DS, Quignon P, Bustamante CD, Sutter NB, Mellersh CS, Parker HG, Ostrander EA, 2007. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet 3: e79. doi: 10.1371/journal.pgen.0030079
  • Oksbjerg N, Gondret F, Vestergaard M, 2004. Basic principles of muscle development and growth in meat-producing mammals as affected by the insulin-like growth factor (IGF) system. Domest Anim Endocrin 27: 219-40.
  • Oldham JM, Martyn JAK, Sharma M, Jeanplong F, Kambadur R, Bass J J, 2001, Molecular expression of myostatin and MyoD is greater in double-muscled than normal-muscled cattle fetuses. Am J Physiol Regul Integr Comp Physiol 280: R1488-R1493.
  • Polanski A, Kimmel M, 2007. Bioinformatics. Springer Verlag: Berlin.
  • Potts JK, Echternkamp SE, Smith TP, Reecy JM, 2003. Characterization of gene expression in double-muscled and normal-muscled bovine embryos. Anim Genet 34: 438-44.
  • Sadkowski T, 2008. Age-, breed- and mstn gene polymorphism-dependent transcriptional profile of skeletal muscle (m. semitendinosns) of bulls. PhD thesis, Warsaw University of Life Sciences (SGGW), Warszawa, Poland.
  • Sadkowski T, Jank M, Oprządek J, Motyl T, 2006. Age-dependent changes in bovine skeletal muscle transcriptomic profile. J Physiol Pharmacol 57: 95-110
  • Schuelke M, Wagner KR, Stolz LE, Hubner C, Riebel T, Kömen W, et al. 2004. Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 350: 2682-2688.
  • Suchyta SP, Sipkovsky S, Kruska R, Jeffers A, McNulty A, Coussens MJ, et al. 2003. Development and testing of a high-density cDNA microarray resource for cattle. Physiol Genomics 15: 158-64.
  • Sudre K, Leroux C, Piétu G, Cassar-Malek I, Petit E, Listrat A, et al. 2003. Transcriptome analysis of two

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-71387875-a1ba-4b89-acea-9b1ea4293139
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.