PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 52 | 1 |

Tytuł artykułu

Pelzaki wolno zyjace jako nosiciele patogenicznych bakterii

Treść / Zawartość

Warianty tytułu

EN
Free-living amoebae as vehicles of pathogenic bacteria

Języki publikacji

PL

Abstrakty

EN
The free-living amoebae are ubiquitous organisms. They are found in humid soil and all water reservoirs, i.e. fresh, sea, freezing and hot water. They mainly feed on bacteria. Pathogenic properties of amoebae and the mechanisms underlying pathological changes induced during human infection have not yet been fully elucidated. They are the causative agents of primary amoebic meningo-encephalitis (PAM), granulomatous amebic encephalitis (GAE), a chronic progressive disease of the central nervous system, amebic keratitis (AK), a chronic eye infection; amebic pneumitis (AP), a chronic lung infection, and skin infection. Only a few isolates are strongly and permanently pathogenic to humans. Some isolates lose their pathogenic properties after one passage. It has been assumed that such "temporary", unstable pathogenic properties of the amoebae may be caused by internal factors carried by them. It is generally known that the free-living amoebae may be naturally infected with pathogenic bacteria, which have the ability to survive for a long time and to proliferate in the amoebae cells. The role of the amoeba in the process of maintaining, propagating and transmitting human pathogens has not been well recognized. It has been suggested that some infections can be acquired by inhaling aerosols containing amoebae cells filled with bacteria. The presence of bacteria inside the free-living amoebae possess a great challenge to organisations responsible for testing and inspecting the quality and cleanliness of surface waters, swimming pools and drinking water intakes.

Wydawca

-

Rocznik

Tom

52

Numer

1

Opis fizyczny

s.1-7,rys.,bibliogr.

Twórcy

autor
  • Akademia Medyczna, ul.Fredry 10, 61-701 Poznan
autor

Bibliografia

  • [1] Page F.C.A. 1976. A revised classification of the Gymnamoeba (Protozoa: Sarcodina). Zooogical Journal of the Linnean Society 58: 61-77.
  • [2] Page F.C.A. 1974. Rosculus ithacus Hawes, 1963, (Amoebida, Flabelluidae) and the amphizoic tendency in amoebae. Acta Protozoologica 13: 143-154.
  • [3] Carter R.F. 1968. Primary amoebic meningo-encephalitis: clinical, pathological and epidemiological features of six fatal cases. Journal of Pathology and Bacteriology 96: 1-25.
  • [4] Martinez A.J, Garcia C.A, Halks-Miller M., Arce-Vela R. 1980. Granulomatous amebic encephalitis presenting as a cerebral mass lesion. Acta Neuropathologica 51: 85-91.
  • [5] Bos H.J., Volker-Dieben H.J., Kok-van Alphen C.C. 1981. A case of Acanthamoeba keratitis in The Netherlands. Transactions of Royal Society of Tropical Medicine and Hygiene 75: 86-91.
  • [6] Johns K.J., O'Day M.D., Head W.S., Neff R.J., Elliott J. 1987. Herpes simplex masquerade syndrome: Acanthamoeba keratitis. Current Eye Research 6: 207-211.
  • [7] Moore M.B. 1988. Acanthamoeba keratitis. Archives of Ophthalmology 106: 1181-1183.
  • [8] Fowler M., Carter R.F. 1965. Acute pyogenic meningitis probably due to Acanthamoeba sp.: a preliminary report. British Medical Journal 5464: 740-742.
  • [9] Casper T., Basset D., Leclercq C., Fabre J., PeyronRaison N., Reynes J. 1999. Disseminated Acanthamoeba infection in a patient with AIDS: response to 5-fluorocytosine therapy. Clinical Infectious Diseases 29: 944-945.
  • [10] Martinez A.J., Visvesvara G.S. 1997. Free-living, amphizoic and opportunistic amebas. Brain Pathology 7: 583-598.
  • [11] Schwarzwald H., Shah P., Hicks J., Levy M., Wagner M.L., Kline M.W. 2003. Disseminated Acanthamoeba infection in a human immunodeficiency virus-infected infant. Pediatric Infectious Disease Journal 22: 197-199.
  • [12] Walochnik J., Obwaller A., Aspöck H. 2000. Correlations between morphological, molecular biological, and physiological characteristics in clinical and nonclinical isolates of Acanthamoeba spp. Applied and Environmental Microbiology 66: 4408-4413.
  • [13] Walochnik J., Obwaller A., Haller-Schober E.M., Aspöck H. 2001. Anti-Acanthamoeba IgG, IgM, and IgA immunoreactivities in correlation to strain pathogenicity. Parasitology Research 87: 651-656.
  • [14] Kingston D. 1969. Towards the isolation of respiratory syncytial virus from the environment. Journal of Applied Bacteriology 31: 498-510.
  • [15] Kingston D., Warhurst D.C. 1969. Isolation of amoebae from the air. Journal of Medical Microbiology 2: 27-36.
  • [16] Jadin J.B. 1975. Wolnożyjące pełzaki chorobotwórcze. Wiadomości Parazytologiczne 21: 493-498.
  • [17] Borochovitz D., Martinez A.J., Patterson G.T. 1981. Osteomyelitis of a bone graft of the mandible with Acanthamoeba castellani infection. Human Pathology 12: 573-576.
  • [18] Gullett J., Mills S., Hadley K., Podemski B., Pitts L., Gelber R. 1979. Disseminated granulomatous Acanthamoeba infection presenting an unusual skin lesion. American Journal of Medicine 67: 891-896.
  • [19] Ringsted J., Jager B.V., Suk D., Visvesvara G.S. 1976. Probable Acanthamoeba meningoencephalitis in a Korean child. American Journal of Clinical Pathology 66: 723-729.
  • [20] Visvesvara G.S., Mirra S.S., Brandt F.H., Moss D.M., Martinez A.J. 1983. Isolation of two strains of Acanthamoeba castellanii from human tissue and their pathogenicity and isoenzyme profiles. Journal of Clinical Microbiology 18: 1405-1412.
  • [21] Naginton J., Watson P.G., Playfair T.J., McGill J., Jones B.R., Steele A.D. 1974. Amoebic infection of the eye. Lancet 2: 1537-1540.
  • [22] Drożański W. 1969. Bacteriolytic enzyme produced by Acanthamoeba castellanii. Acta Microbiologica Polonica A 1: 155-168.
  • [23] Neumeister B., Reiff G., Faigle M., Dietz K., Northoff H., Lang F. 2000. Influence of Acanthamoeba castellanii on intracellular growth of different Legionella species in human monocytes. Applied and Environmental Microbiology 66: 914-919.
  • [24] Weekers P.H., Engelberts A.M., Vogels G.D. 1995. Bacteriolytic activities of the free-living soil amoebae, Acanthamoeba castellanii, Acanthamoeba polyphaga and Hartmannella vermiformis. Antonie Van Leeuwenhoek 68: 237-243.
  • [25] Wang X., Ahearn D.G. 1997. Effect of bacteria on survival and growth of Acanthamoeba castellanii. Current Microbiology 34: 212-215.
  • [26] Ly T.M.C., Müller H.E. 1990. Interactions of Listeria monocytogenes, Listeria seeligeri and Listeria innocula with protozoans. Journal of General and Applied Microbiology 36: 143-150.
  • [27] Thom S., Warhurst D., Drasar B.S.F. 1992. Association of Vibrio cholerae with fresh water amoebae. Journal of Medical Microbiology 36: 303-306.
  • [28] Gautom R.K., Fritsche T.R. 1995. Transmissibility of bacterial endosymbionts between isolates of Acanthamoeba spp. Journal of Eukaryotic Microbiology 42: 452-546.
  • [29] Michel R., Muller K.D., Hauroder B., Zoller L. 2000. A coccoid bacterial parasite of Naegleria sp. (Schizopyrenida: Vahlkampfiaidae) inhibits cyst formation of its host but not transformation to the flagellate stage. Acta Protozoologica 39: 199-207.
  • [30] Rowbotham J.T. 1980: Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. Journal of Clinical Pathology 33: 1179-1183.
  • [31] Greub G., Raoult D. 2002. Crescent bodies of Parachlamydia acanthamoeba and its life cycle within Acanthamoeba polyphaga: an electron micrograph study. Applied and Environmental Microbiology 68: 3076-3084.
  • [32] Barker J., Brown M.R. 1994. Trojan horses of the microbial world: protozoa and the survival of bacterial pathogens in the environment. Microbiology 140: 1253-1259.
  • [33] Tomov A.T., Tsvetkova E.D., Tomova I.A., Michailova L.I., Kassovski V.K. 1999. Persistence and multiplication of obligate anaerobe bacteria in amebae under aerobic conditions. Anaerobe 5: 19-23.
  • [34] Drożański W. 1956. Fatal bacterial infection in soil amoebae. Acta Microbiologica Polonica 5: 315-317.
  • [35] Drożański W. 1991. Sarcobium lyticum gen. nov., sp. nov., an obligate intracellular bacterial parasite of small free-living amoebae. International Journal of Systematic Bacteriology 41: 82-87.
  • [36] Abu Kwaik Y. 1996. The phagosome containing Legionella pneumophila within the protozoan Hartmannella vermiformis is surrounded by the rough endoplasmic reticulum. Applied and Environmental Microbiology 62: 2022-2028.
  • [37] Maurelli A.T. 1989. Temperature regulation of virulence genes in pathogenic bacteria: a general strategy for human pathogens? Microbial Pathogenesis 7: 1-10.
  • [38] Mauchline W.S., Araujo R., Wait R., Dowsett A.B., Dennis P.J., Keevil C.W. 1993. Physiology and morphology of Legionella pneumophila in continuous culture at low oxygen concentration. Journal of General Microbiology 138: 2371-2380.
  • [39] Anand C.M., Skinner A.R., Malic A., Kurtz J.B. 1983: Interaction of L. pneumophila and a free living amoeba (Acanthamoeba palestinensis). Journal of Hygiene ( London) 91: 167-178.
  • [40] Barker J., Brown M.R., Collier P.J., Farrell I., Gilbert P. 1992. Relationship between Legionella pneumophila and Acanthamoeba polyphaga: physiological status and susceptibility to chemical inactivation. Applied and Environmental Microbiology 58: 2420-2425.
  • [41] Abu Kwaik Y., Gao L.Y., Harb O.S., Stone B.J. 1997. Transcriptional regulation of the macrophageinduced gene (gspA) of Legionella pneumophila and phenotypic characterization of a null mutant. Molecular Microbiology 24: 629-642.
  • [42] Barker J., Lambert P.A., Brown M.R. 1993. Influence of intra-amoebic and other growth conditions on the surface properties of Legionella pneumophila. Infection and Immunity 61: 3503-3510.
  • [43] Barker J., Scaife H., Brown M.R. 1995. Intraphagocytic growth induces an antibiotic-resistant phenotype of Legionella pneumophila. Antimicrobial Agents and Chemotherapy 39: 2684-2688.
  • [44] King C.H., Fields B.S., Shotts Jr. E.B., White E.H. 1991. Effects of cytochalasin D and methylamine on intracellular growth of Legionella pneumophila in amoebae and human monocyte-like cells. Infection and Immunity 59: 758-763.
  • [45] Susa M., Hacker J., Marre R. 1996. De novo synthesis of Legionella pneumophila antigens during intracellular growth in phagocytic cells. Infection and Immunity 64: 1679-1684.
  • [46] Cirillo J.D., Falkow S., Tompkins L.S. 1994. Growth of Legionella pneumophila in Acanthamoeba castellanii enhances invasion. Infection and Immunity 62: 3254-3261.
  • [47] Cianciotto N.P., Fields B.S. 1992. Legionella pneumophila mip gene potentiates intracellular infection of protozoa and human macrophages. Proceedings of the National Academy of Sciences of the United States of America 89: 5188-5191.
  • [48] Cirillo J.D., Cirillo S.L., Yan L., Bermudez L.E., Falkow S., Tompkins L.S. 1999. Intracellular growth in Acanthamoeba castellanii affects monocyte entry mechanisms and enhances virulence of Legionella pneumophila. Infection and Immunity 67: 4427-4434.
  • [49] Moffat J.F., Edelstein P.H., Regula Jr. D.P., Cirillo J.D., Tompkins L.S. 1994. Effects of an isogenic Zn-metalloprotease-deficient mutant of Legionella pneumophila in a guinea-pig pneumonia model. Molecular Microbiology 12: 693-705.
  • [50] Cirillo J.D., Falkow S., Tompkins L.S., Bermudez L.E. 1997. Interaction of Mycobacterium avium with environmental amoebae enhances virulence. Infection and Immunity 65: 3759-3767.
  • [51] Harb O.S., Gao L., Kwaik Y.A. 2000. From protozoa to mammalian cells: a new paradigm in the life cycle of intracellular bacterial pathogens. Environmental Microbiology 2: 251-265.
  • [52] Jadin J.B. 1975. Amibes limax vecteurs possible de Mycobacteries et de Mycobacterium leprae. Acta Leprologica 59: 57-67.
  • [53] Krishna-Prasad B.N., Gupta S.K. 1978. Preliminary report on engulfmet and retention of mycobacteria by trophozoites of axenicaly grown Acanthamoeba castellani Douglas, 1930. Current Science 47: 245-247.
  • [54] Steinert M., Birkness K., White E., Fields B., Quinn F. 1998. Mycobacterium avium bacilli grow saprozoically in coculture with Acanthamoeba polyphaga and survive within cyst walls. Applied and Environmental Microbiology 64: 2256-2261.
  • [55] Abd H., Weintraub A., Sandström G. 2005. Intracellular survival and replication of Vibrio cholerae O139 in aquatic free-living amoebae. Environmental Microbiology 7: 1003-1008.
  • [56] Ly T.M.C., Müller H.E. 1990. Ingested Listeria monocytogenes survive and multiply in protozoa. Journal of Medical Microbiology 33: 51-54.
  • [57] Amann R., Springer W., Schönhuber W., Ludwig W., Schmid E.N., Müller K.D., Michel R. 1997. Obligate intracellular bacterial parasites of Acanthamoeba related to Chlamydia spp. Applied and Environmental Microbiology 63: 115-121.
  • [58] Essig A., Heinemann M., Simnacher U., Marre R. 1997. Infection of Acanthamoeba castellanii by Chlamydia pneumoniae. Applied of Environmental Microbiology 63: 1396-1399.
  • [59] Fritsche T.R., Horn M., Seyedirashti S., Gauton R.K., Schleifer K., Wagner M. 1999. In situ detection of novel bacterial endosymbionts of Acanthamoeba spp. Phylogenically related to members of the order Rickettsiales. Applied and Environmental Microbiology 65: 206-212.
  • [60] Inglis T.J., Rigby P., Robertson T.A., Dutton N.S., Henderson M., Chang B.J. 2000. Interaction between Burkholderia pseudomallei and Acanthamoeba species results in coiling phagocytosis, endamebic bacterial survival, and escape. Infection and Immunity 68: 1681-1686.
  • [61] Marolda C.L., Hauroder B., John M.A., Michel R., Valvano M.A. 1999. Intracellular survival and saprophytic growth of isolates from the Burkholderia cepacia complex in free-living amoebae. Microbiology 145: 1509-1517.
  • [62] Landers P., Kerr K.G., Rowbotham T.J., Tipper J.L., Keig P.M., Ingham E., Denton M. 2000. Survival and growth of Burkholderia cepacia within the free-living amoeba Acanthamoeba polyphaga. European Journal of Clinical Microbiology and Infection Diseases 19: 121-123.
  • [63] Gaze W.H., Burroughs N., Gallagher M.P., Wellington E.M.H. 2003. Interactions between Salmonella typhimurium and Acanthamoeba polyphaga, and observation of a new model of intracellular growth within contractile vacuoles. Microbial Ecology 46: 358-369.
  • [64] Finlay B.B., Falkow S. 1989. Salmonella as an intracellular parasite. Molecular Microbiology 3: 1833-1841.
  • [65] Williams P.H., Robertson M., Hinson G. 1988. Stages in bacterial invasion. Society for Applied Bacteriology Symposium Series 17: 131-147.
  • [66] Abd H., Johansson T., Golovliov I., Sandstrom G., Forsman M. 2003. Survival and growth of Francisella tularensis in Acanthamoeba castellanii. Applied and Environmental Microbiology 69: 600-606.
  • [67] Winiecka-Krusnel J., Linder E. 2001. Bacterial infections of free-living amoebae. Research in Microbiology 152: 613-619.
  • [68] Venkataraman C., Haack B.J., Bondada S., Abu Kwaik Y. 1997. Identification of a Gal/GalNAc lectin in the protozoan Hartmannella vermiformis as a potential receptor for attachment and invasion by the Legionnaires' disease bacterium, Legionella pneumophila. Journal of Experimental Medicine 186: 537-547.
  • [69] Ockert G. 1993. Review article: occurrence, parasitism and pathogenetic potency of free-living amoeba. Applied Parasitology 34: 77-88.
  • [70] Hof H. 1991. Microbial strategies for intracellular survival. Infection 19: 202-205.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-7115d5ea-312c-4b4d-99f2-cbb479a1f1cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.