PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 50 | 4 |

Tytuł artykułu

Genetic mechanisms underlying male sex determination in mammals

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Genetic control of gonadal development proceeds through either the male or female molecular pathways, driving bipotential gonadal anlage differentiation into a testis or ovary. Antagonistic interactions between the 2 pathways determine the gonadal sex. Essentially sex determination is the enhancement of one of the 2 pathways according to genetic sex. Initially, Sry with other factors upregulates Sox9 expression in XY individuals. Afterwards the expression of Sox9 is maintained by a positive feedback loop with Fgf9 and prostaglandin D₂ as well as by autoregulative ability of Sox9. If these factors reach high concentrations, then Sox9 and/or Fgf9 may inhibit the female pathway. Surprisingly, splicing, nuclear transport, and extramatrix proteins may be involved in sex determination. The male sex determination pathway switches on the expression of genes driving Sertoli cell differentiation. Sertoli cells orchestrate testicular differentiation. In the absence of Sry, the predomination of the female pathway results in the realization of a robust genetic program that drives ovarian differentiation.

Wydawca

-

Rocznik

Tom

50

Numer

4

Opis fizyczny

p.347-360,fig.,ref.

Twórcy

autor
  • Department of Comparative Anatomy, Institute of Zoology, Jagiellonian University, Ingardena 6, 30-060 Krakow, Poland

Bibliografia

  • Adams IR, McLaren A, 2002. Sexually dimorphic development of mouse primordial germ cells: switching from oogenesis to spermatogenesis. Development 129: 1155-1164.
  • Albrecht KH, Eicher EM, 2001. Evidence that Sty is expressed in pre-Sertoli cells and Sertoli and granulosa cells have a common precursor. Dev Biol 240: 92-107.
  • Albrecht KH, Young M, Washburn LL, Eicher EM, 2003. Sry expression level and protein isoform differences play a role in abnormal testis development in C57BL/6J mice carrying certain Sry alleles. Genetics 164: 277-288.
  • Alfi O, Donneil GN, Crandall BF, Derencsenyi A, Menon R, 1973. Deletion of the short arm of chromosome no.9 (46,9p-): a new deletion syndrome. Ann Genet 16: 17-22.
  • Argentara A, Sim H, Kelly S, Preiss S, Clayton A, Jans DA, Harley VR, 2003. A SOX9 defect of calmodulin-dependent nuclear import in campomelic dysplasia/autosomal sex reversal. J Biol Chem 278: 33839-33847.
  • Bagheri-Fam S, Barrionuevo F, Dohrmann U, Gunther T, Schule R, Kemler R, et al. 2006. Long-range upstream and downstream enhancers control distinct subsets of the complex spatiotemporal Sox9 expression pattern. Dev Biol 291: 382-397.
  • Bagheri-Fam S, Sim H, Jayakody I, Taketo MM, Scherer G, Harley VR, 2008. Loss of Fgfr2 leads to partial XY sex reversal. Dev Biol 314: 71-83.
  • Bardoni B, Zanaria E, Guioli S, Floridia G, Worley KC, Tonini G, et al. 1994. A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal. Nat Genet 7: 497-501.
  • Barrionuevo F, Bagheri-Fam S, Klattig J, Kist R, Taketo MM, Englert C, Scherer G, 2006. Homozygous inactivation of Sox9 causes complete XY sex reversal in mice. Biol Reprod 74: 195-201.
  • Bernard P, Sim H, Knower K, Vilain E, Harley, 2008. Human SRY inhibits ß-catenin-mediated transcription. Int J Biochem Cell Biol 40: 2889-2900.
  • Beverdam A, Koopman P, 2006. Expression profiling of purified mouse gonadal somatic cells during the critical time window of sex determination reveals novel candidate genes for human sexual dysgenesis syndromes. Hum Mol Genet 15: 417-431.
  • Birk OS, Casiano DE, Wassif CA, Cogliati T, Zhao L, Zhao Y, et al. 2000. The LIM homeobox gene Lhx9 is essential for mouse gonad formation. Nature 403: 909-913.
  • Bishop CE, Whitworth DJ, Qin Y, Agoulnik AI, Agoulnik IU, Harrison WR, et al. 2000. A transgenic insertion upstream of Sox9 is associated with dominant XX sex reversal in the mouse. Nat Genet 26: 490-494.
  • Boie Y, Sawyer N, Slipetz DM, Metters KM, Abramovitz M, 1995. Molecular cloning and characterization of the human prostanoid DP receptor. J Biol Chem 270: 18910-18916.
  • Bor YC, Swartz J, Morrison A, Rekosh D, Ladomery M, Hammarskjold ML, 2006. The Wilms' tumor 1 (WT1) gene (+KTS isoform) functions with a CTE to enhance translation from an unspliced RNA with a retained intron. Gene Dev 20: 1597-1608.
  • Bouma GJ, Albrecht KH, Washburn LL, Recknagel AK, Churchill GA, Eicher EM, 2005. Gonadal sex reversal in mutant Dax1 XY mice: a failure to upregulate Sox9 in pre-Sertoli cells. Development 132: 3045-3054.
  • Bouma GJ, Washburn LL, Albrecht KH, Eicher EM, 2007. Correct dosage of Fog2 and Gata4 transcription factors is critical for fetal testis development in mice. Proc Natl Acad Sci USA 104: 14994-14999.
  • Brennan J, Capel B, 2004. One tissue, two fates: molecular genetic events that underlie testis versus ovary development. Nat Rev Genet 5: 509-521.
  • Breyer MD, Breyer RM, 2001. G protein-coupled prostanoid receptors and the kidney. Annu Rev Physiol 63: 579-605.
  • Bullejos M, Koopman P, 2001. Spatially dynamic expression of Sry in mouse genital ridges. Dev Dyn 221: 201-205.
  • Bullejos M, Koopman P, 2005. Delayed Sry and Sox9 expression in developing mouse gonads underlies B6-Y(DOM) sex reversal. Dev Biol 278: 473-481.
  • Canning C, Lovell-Badge R, 2002. Sry and sex determination: how lazy can it be? Trends Genet 18: 111-113.
  • Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, et al. 1993. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73: 1019-1030.
  • Chaboissier MC, Kobayashi A, Vidal VI, Lutzkendorf S, van de Kant HJ, Wegner M, et al. 2004. Functional analysis of Sox8 and Sox9 during sex determination in the mouse. Development 131: 1891-1901.
  • Colvin JS, Green RP, Schmahl J, Capel B, Ornitz DM, 2001. Male-to-female sex reversal in mice licking fibroblast growth factor 9. Cell 104: 875-889.
  • Cousineau AJ, Higgins JV, Hackel E, Waterman DF, Toriello H, Carlile PA, Cook PJL, 1981. Cytogenetic recognition of chromosomal duplication [dup(l)(p31..4 leads to p22.1)] and the detection of three different alleles at the PGM1 locus. Ann Hum Genet 45: 337-340.
  • DeFalco TJ, Verney G, Jenkins AB, McCaffery JM, Russell S, Van Doren M, 2003. Sex-specific apoptosis regulates sexual dimorphism in the Drosophila embryonic gonad. Dev Cell 5:205-216.
  • De Grandi A, Calvari V, Bertini V, Bulfone A, Peverali G, Camerino G, et al. 2000. The expression pattern of a mouse doubles ex-related gene is consistent with a role in gonadal differentiation. Mech Dev 90: 323-326.
  • de Santa Barbara P, Bonneaud N, Boizet B, Desclozeaux M, Moniot B, Südbeck P, et al. 1998. Direct interaction of SRY-related protein SOX9 and steroidogenic factor 1 regulates transcription of the human anti-Müllerian hormone gene. Mol Cell Biol 18: 6653-6665.
  • de Santa Barbara P, Mejean C, Moniot B, Malcles MH, Berta P, Boizet-Bonhoure B, 2001. Steroidogenic factor-1 contributes to the cyclic-adenosine monophosphate down-regulation of human SRY gene expression. Biol Reprod 64: 775-783.
  • de Santa Barbara P, Moniot B, Poulat F, Berta P, 2000. Expression and subcellular localization of SF-1, SOX9, WT1, and AMH proteins during early human testicular development. Dev Dyn 217: 293-298.
  • Eicher E M, Washburn LL, Schork NJ, Lee BK, Shown EP, XuX, etal. 1996. Sex-determining genes on mouse autosomes identified by 1inkage analysis of C57BL/6J-YPOS sex reversal. Nat Genet 14: 206-209.
  • Eicher EM, Washburn LL, Whitney IJ, Morrow KE, 1982. Mas poschiavimis Y chromosome in the C57BL/6J murine genome causes sex reversal. Science 217: 535-537.
  • Elejalde BR, Opitz JM, de Elejade MM, Gilbert EF, Abellera M, Meisner L, et al. 1984. Tandem dup (lp) within the short arm of chromosome 1 in a child with ambiguous genitalia and multiple congenital anomalies. Am J Med Genet 17: 723-730.
  • Flejter WL, Fergestad J, Górski J, Varvill T, Chandrasekharappa S, 1998. A gene involved in XY sex reversal is located on chromosome 9, distal to marker D9S1779. Am J Hum Genet 63: 794-802.
  • Fleming A, Vilain E, 2004. The endless quest for sex determination genes. Clin Genet 67: 15-25.
  • Ford CE, 1970. Genetic activity of sex chromosomes in genital cells. Phil Trans Roy Soc Lond B 259: 53-55.
  • Forwood J, Harley V, Jans D, 2001. The C-terminal nuclear localization signal of the sex determining region Y (SRY) high mobility group domain mediates nuclear import through importin beta 1. J Biol Chem 276: 46575-46582.
  • Gasca S, Canizares J, De Santa Barbara P, Mejean C, Poulat F, Berta P, Boizet-Bouhoure B, 2002. A nuclear export signal within the high mobility group domain regulates the nucleocytoplasmic translocation of SOX9 during sexual determination. Proc Natl Acad Sci USA 99: 11199-11204.
  • Giese K, Pagel J, Grosschedl R, 1994. Distinct DNA-binding properties of the high mobility group domain of murine and human SRY sex-determining factors. Proc Natl Acad Sci USA 91: 3368-3372.
  • Gubbay J, Collignon J, Koopman P, Capel B, Economou A, Münsterberg A, et al. 1990. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 346: 245-250.
  • Hacker A, Capel B, Goodfellow P, Lovell-Badge R, 1995. Expression ofSry, the mouse sex determining gene. Development 121: 1603-1614.
  • Hammes A, Guo JK, Lutsch G, Leheste JR, Landrock D, Ziegler U, et al. 2001. Two splice variants of the Wilms' tumor 1 gene have distinct functions during sex determination and nephron formation. Cell 106: 319-329.
  • Hanley NA, Hagan DM, Clement-Jones M, Ball SG, Strachan T, Salas-Cortes L, et al. 2000. SRY, SOX9, and DAX1 expression patterns during human sex determination and gonadal development. Mech Dev 91: 403-407.
  • Harley VR, Layfield S, Mitchell CL, Forwood JK, John AP, Briggs LJ, et al. 2003. Defective importin beta recognition and nuclear import of the sex determining factor SRY are associated with XY sex-reversing mutations. Proc Natl Acad Sci USA 100: 7045-7050.
  • Harley VR, Lovell-Badge R, Goodfellow PN, 1994. Definition of a consensus DNA binding site for SRY. Nucleic Acids Res 22: 1500-1501.
  • Harley VR, Lovell-Badge R, Goodfellow PN, Hextall PJ, 1996. The HMG box of SRY is a calmodulin binding domain. FEBS Lett 391: 4-28.
  • Hossain A, Saunders GF, 2001. The human sex-determining gene SRY is a direct target of WT1. J Biol Chem 276: 16817-16823.
  • Huang B, Wang S, Ning Y, Lamb AN, Bartley J, 1999. Autosomal XX sex reversal caused by duplication of SOX9. Am J Med Genet 87: 349-353.
  • Ikeda Y, Takeda Y, Shikayama T, Mukai T, Hisano S, Morohashi KI, 2001. Comparative localization of DAX-1 and Ad4BP/SF-l during development of the hypothalamic-pituitary-gonadal axis suggests their closely related and distinct functions. Dev Dyn 220: 363-376.
  • Ito M, Yu R, Jameson JL, 1997. DAX-1 inhibits SF-1-mediated transactivation via a carboxy-terminal domain that is deleted in adrenal hypoplasia congenita. Mol Cell Biol 17: 1476-1483.
  • Jeays-Ward K, Dandonneau M, Swain A, 2004. Wnt4 is required for proper male as well as female sexual development. Dev Biol 276: 431-440.
  • Jeays-Ward K, Hoyle C, Brennan J, Dandonneau M, Alldus G, Capel B, Swain A, 2003. Endothelial and steroidogenic cell migration are regulated by WNT4 in the developing mammalian gonad. Development 130: 3663-3670.
  • Jordan BK, Shen JH, Olaso R, Ingraham HA, Vilain E, 2003. Wnt4 overexpression disrupts normal testicular vasculature and inhibits testosterone synthesis by repressing steroidogenic factor 1/beta-catenin synergy. Proc Natl Acad Sci USA 100: 10866-10871.
  • Kanai Y, Koopman P, 1999. Structural and functional characterization of the mouse Sox9 promoter: implications for campomelic dysplasia. Hum Mol Genet 8: 691-696.
  • Katoh-Fukui Y, Tsuchiya R, Shiroishi T, Nakahara Y, Hashimoto N, Noguchi K, Higashinakagawa T, 1998. Male to female sex reversal in M33 mutant mice. Nature 393: 688-692.
  • Kent J, Wheatley SC, Andrews JE, Sinclair AH, Koopman P, 1996. A male-specific role for SOX9 in vertebrate sex determination. Development 122: 2813-2822.
  • Kidokoro T, Matoba S, Hiramatsu R, Fujisawa M, Kanai-Azuma M, Taya C, et al. 2005. Influence on spatiotemporal patterns of a male-specific Sox9 activation by ectopic Sry expression during early phases of testis differentiation in mice. Dev Biol 278: 511-525.
  • Kim Y, Bingham N, Sekido R, Parker KL, Lovell-Badge R, Capel B, 2007. Fibroblast growth factor receptor 2 regulates proliferation and Sertoli differentiation during male sex determination. Proc Natl Acad Sci USA 104: 16558-16563.
  • Kim Y, Kobayashi A, Sekido R, DiNapoli L, Brennan J, Chaboissier MC, et al. 2006. Fgf9 and Wnt4 act as antagonistic signals to regulate mammalian sex determination. PLoS Biol 4 e187.
  • Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R, 1991. Male development of chromosomally female mice transgenic for Sry. Nature 351: 117-121.
  • Kriedberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, 1993. Wt-1 is required for early kidney development. Cell 74: 679-691.
  • Li B, Zhang W, Chan G, Jancso-Radek A, Liu S, Weiss M, 2001. Human sex reversal due to impaired nuclear localization of SRY-A clinical correlation. J Biol Chem 276: 46480-46484.
  • Lin Y, Philibert P, Ferraz-de-Souza B, Kelberman D, Homfray T, Albanese A, et al. 2007. Heterozygous missense mutations in steroidogenic factor 1 (SFl/Ad4BP, NR5A1) are associated with 46,XY disorders of sex development with normal adrenal function. J Clin Endocrinol Metab 92: 991-999.
  • Luo X, Ikeda Y, Parker K, 1994. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77: 481-490.
  • Malki S, Nef S, Notarnicola C, Thevenet L, Gasca S, Mejean C, et al. 2005. Prostaglandin D2 induces nuclear import of the sex-determining factor SOX9 via its cAMP-PKA phosphorylation. EMBO J 24: 1798-1809.
  • Manuylov NL, Fujiwara Y, Adameyko II, Poulat F, Tevosian SG, 2007. The regulation of Sox9 gene expression by the GATA4/FOG2 transcriptional complex in dominant XX sex reversal mouse models. Dev Biol 307: 356-367.
  • McElreavey K, Vilain E, Abbas E, Herskowitz I, Fellous M, 1993. A regulatory cascade hypothesis for mammalian sex determination: SRY represses a negative regulator of male development. Proc Natl Acad Sci USA 90: 3368-3372.
  • Meeks JJ, Weiss J, Jameson JL, 2003. Daxl is required for testis determination. Nat Genet 34: 32-33.
  • Menke DB, Page DC, 2002. Sexually dimorphic gene expression in the developing mouse gonad. Gene Expr Patterns 2: 359-367.
  • Miyamoto Y, Taniguchi H, Hamel F, Silversides DW, Viger RS, 2008. A GATA4/WT1 cooperation regulates transcription of genes required for mammalian sex determination and differentiation. BMC Dev Biol 9: 44.
  • Miyamoto N, Yoshida M, Kuratani S, Matsuo I, Aizawa S, 1997. Defects of urogenital development in mice lacking Emx2. Development 124: 1653-1664.
  • Mizusaki H, Kawabe K, Mukai T, Ariyoshi E, Kasahara M, Yoshioka H, et al. 2003. Dax-1 promoter is stimulated by SF-1 (steroidogenic factor-1) and inhibited by COUP-TF (chicken ovoalbumin upstream promoter-transcription factor) via a composite nuclear receptor-regulatory element. Mol Endocrinol 12: 1010-1022.
  • Mohammed FM, Farag TI, Gunawardana SS, al-Digashim DD, al-Awadi SA, al-Othaman A, Sundareshan TS, 1989. Direct duplication of chromosome 1, dir dup(l) (p21.2-p32) in Bedouin boy with multiple congenital anomalies. Am J Med Genet 32: 353-355.
  • Moniot B, Berta P, Scherer G, Sudbeck P, Poulat F, 2000. Male-specific expression suggests role of DMRT1 in human sex determination. Mech Dev 91: 323-325.
  • Morais da Silva S, Hacker A, Harley V, Goodfellow P, Swain A, Lovell-Badge R, 1996. Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nat Genet 14: 62-68.
  • Nachtigal MW, Hirokawa Y, Enyeart-van Houten DL, Flanagan JN, Hammer GD, Ingraham HA, 1998. Wilms' tumor 1 and Dax1 modulate the orphan nuclear receptor SF1 in sex-specific gene expression. Cell 93: 445-454.
  • Nef S, Schaad O, Stallings NR, Cederroth CR, Pitetti JL, Schaer G, et al. 2005. Gene expression during sex determination reveals a robust female genetic program at the onset of ovarian development. Dev Biol 287: 361-377.
  • Nef S, Verma-Kurvari S, Merenmies J, Vassalli JD, Efstratiadis A, Accili D, Parada LF, 2003. Testis determination requires insulin receptor family function in mice. Nature 426: 291-295.
  • Oh HJ, Li Y, Lau YF, 2005. Sry associates with the heterochromatin protein 1 complex by interacting with a KRAB domain protein. Biol Reprod 72: 407-415.
  • Ohe K, Lalli E, Sassone-Corsi P, 2002. A direct role of SRY and SOX proteins in pre-mRNA splicing. Proc Natl Acad Sci USA 99: 1146-1 151.
  • Palmer SJ, Burgoyne PS, 1991. In situ analysis of fetal, prepubertal and adult XX/XY chimaeric mouse testes: Sertoli cells are predominantly, but not exclusively, XY. Development 112: 265-268.
  • Park SY, Meeks JJ, Raverot G, Pfaff LE, Weiss J, Hammer GD, Jameson JL, 2005. Nuclear receptors Sfl and Dax1 function cooperatively to mediate somatic cell differentiation during testis development. Development 132: 2415-2423.
  • Parma P, Pailhoux E, Cotinot C, 1999. Reverse transcription-polymerase chain reaction analysis of genes involved in gonadal differentiation in pigs. Biol Reprod 61: 741-748.
  • Parma P, Radi O, Vidal V, Chaboissier MC, Dellambra E, Valentini S, et al. 2006. R-spondin 1 is essential in sex determination, skin differentiation and malignancy. Nat Genet 38: 1304-1309.
  • Payen E, Pailhoux E, Abou Mehri R, Gianquinto L, Kirszenbaum M, et al. 1996. Characterization of ovine SRY transcript and developmental expression of genes involved in sexual differentiation. Int J Dev Biol 40: 567-575.
  • Phillips NB, Jancso-Radek A, Ittah V, Singh R, Chan G, Haas E, Weiss MA, 2006. SRY and human sex determination: the basic tail of the HMG box functions as a kinetic clamp to augment DNA bending. J Mol Biol 358: 172-192.
  • Pilon N, Daneau I, Paradis V, Hamel F, Lussier JG, Viger RS, Silversides DW, 2003. Porcine SRY promoter is a target for steroidogenic factor 1. Biol Reprod 68: 1098-1106.
  • Polanco JC, Koopman P, 2007. Sry and the hesitant beginnings of male development. Dev Biol 302: 13-24.
  • Pontiggia A, Rimini R, Harley VR, Goodfellow PN, Lovell-Badge R, Bianchi ME, 1994. Sex-reversing mutations affect the architecture of SRY-DNA complexes. EMBO J 13: 6115-6124.
  • Poulat F, de Santa Barbara P, Desclozeaux M, Soullier S, Moniot B, Bonneaud N, 1997. The human testis-determining factor SRY binds a nuclear factor containing PDZ protein interaction domains. J Biol Chem 272: 7167-7172.
  • Poulat F, Girard F, Chevron MP, Gozé C, Rebillard X, Calas B, et al. 1995. Nuclear localization of the testis-determining gene product SRY. J Cell Biol 128: 737-748.
  • Qin Y, Kong L, Poirier C, Truong C, Overbeek PA, Bishop CE, 2004. Long-range activation of Sox9 in Odd Sex (Ods) mice. Hum Mol Genet 13: 1213-1218.
  • Qin Y, Bishop CE, 2005. Sox9 is sufficient for functional testis development producing fertile male mice in the absence of Sry. Hum Mol Genet 14: 1221-1229.
  • Raymond CS, Kettlewell JR, Hirsch B, Bardwell VJ, Zarcower D, 1999. Expression of Dmrt1 in the genital ridge of mouse and chicken embryos suggests a role in vertebrate sexual development. Dev Biol 215: 208-220.
  • Raymond C, Murphy M, O'Sullivan M, Bardwell V, Zarkower D, 2000. Dmrtl, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation. Genes Dev 14: 2587-2595.
  • Rossi P, Dolci S, Albanesi C, Grimaldi P, Geremia R, 1993. Direct evidence that the mouse sex-determining gene Sry is expressed in the somatic cells of male fetal gonads and in the germ cell line in the adult testis. Mol Reprod Dev 34: 369-373.
  • Salas-Cortes L, Jaubert F, Barbaux S, Nassmann C, Bono MR, Fellous M, et al. 1999. The human SRY protein is present in fetal and adult Sertoli cells and germ cells. Int J Dev Biol 43: 135-140.
  • Schmahl J, Kim Y, Colvin JS, Ornitz DM, Capel B, 2004. Fgf9 induces proliferation and nuclear localization of FGFR2 in Sertoli precursors during male sex determination. Development 131: 3627-3636.
  • Sekido R. Bar I, Narvaez V, Penny G, Lovell-Badge R, 2004. SOX9 is up-regulated by the transient expression of SRY specifically in Sertoli cell precursors. Dev Biol 274: 271-279.
  • Sekido R, Lovell-Badge R, 2008. Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 453: 930-934.
  • Shen JH, Ingraham HA, 2002. Regulation of the orphan nuclear receptor steroidogenic factor 1 by Sox proteins. Mol Endocrinol 16: 529-540.
  • Shimamura R, Fraizer GC, Trapman J, Lau YfC, Saunders GF, 1997. The Wilms' tumor gene WT1 can regulate genes involved in sex determination and differentiation: SRY, Müllerian-inhibiting substance, and the androgen receptor. Clin Cancer Res 3: 2571-2580.
  • Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, et al. 1990. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346: 240-244.
  • Smith JM, Koopman PA, 2004. The ins and outs of transcriptional control: nucleocytoplasmic shuttling in development and disease. Trends Genet 20: 4-8.
  • Smith CA, McClive PJ, Western PS, Reed KJ, Sinclair AH, 1999. Conservation of a sex-determining gene. Nature 402: 601-602.
  • Swain A, Narvaez V, Burgoyne P, Camerino G, Lovell-Badge R, 1998. Dax1 antagonizes Sry action in mammalian sex determination. Nature 391: 761-767.
  • Swain A, Zanaria E, Hacker A, Lovell-Badge R, Camerino G, 1996. Mouse Dax-1 expression is consistent with a role in sex determination as well as in adrenal and hypothalamus function. Nat Genet 12: 404-409.
  • Taketo T, Lee CH, Zhang J, Li Y, Lee CY, Lau YF, 2005. Expression of SRY proteins in both normal and sex-reversed XY fetal mouse gonads. Dev Dyn 233: 612-622.
  • Tevosian SG, Albrecht KH, Crispino JD, Fujiwara Y, Eicher EM, Orkin SH, 2002. Gonadal differentiation, sex determ ination and normal Sry expression in mice require direct interaction between transcription partners GATA4 and FOG2. Development 129: 4627—4634.
  • Thevenet L, Albrecht KH, Malki S, Berta P, Boizet-Bonhoure B, Poulat F, 2005. NHERF2/SIP-1 interacts with mouse SRY via a different mechanism than human SRY. J Biol Chem 280: 38625-38630.
  • Thevenet L, Mejean C, Moniot B, BonneaudN, Galeotti N, Aldrian-Herrada G, et al. 2004. Regulation of human SRY subcellular distribution by its acetylation/deacetylation.EMBOJ23: 3336-3345.
  • Tremblay JJ, Viger RS, 2001. Nuclear receptor Dax-1 represses the transcriptonal cooperation between GATA-4 and SF-1 in Sertoli cells. Biol Reprod 64: 1191-1199.
  • Urade Y, Eguchi N, 2002. Lipocalin-type and hematopoietic prostaglandin D synthases as a novel example of functional convergence. Prostagland. Other Lipid Mediat 68-69: 375-382.
  • Urade Y, Hayaishi O, 2000. Biochemical, structural, genetic, physiological, and pathophysiological features of lipocalin-type prostaglandin D synthase. Biochim Biophys Acta 1482: 259-271.
  • Veitia R, Nunes M, Brauner R, Doco-Fenzy M, Joanny-Flinois O, Jaubert F, et al. 1997. Deletions of distal 9p associated with 46, XY male to female sex reversal: definition of the breakpoints at 9p23.3-p24.1. Genomics 41: 271-274.
  • Veitia RA, Nunes M, Quintana-Murci L, Rappaport R, Thibaud E, Jaubert F, et al. 1998. Swyer syndrome and 46,XY partial gonadal dysgenesis associated with 9p deletions in the absence of monosomy-9p syndrome. Am J Hum Genet 63: 901-905.
  • Vidal VP, Chaboissier MC, de Rooij DG, Schedl A, 2001. Sox9 induces testis development in XX transgenic mice. Nat Genet 28: 216-217.
  • Werner MH, Bianchi ME, Gronenborn AM, Clore GM, 1995. NMR spectroscopic analysis of the DNA conformation induced by the human testis-determining factor SRY. Biochemistry 34: 11998-12004.
  • Wieacker P, Missbach D, Jakubiczka S, Borgmann S, Albers N, 1996. Sex reversal in a child with karyotype 46, XY, dup (1) (p22.3p32.3). Clin Genet 49: 271-273.
  • Wilhelm D, 2007a. R-spondinl - discovery of the long-missing, mammalian female-determining gene? BioEssays 29: 314-318.
  • Wilhelm D, Hiramatsu R, Mizusaki H, Widjaja L, Combes AN, Kanai Y, Koopman P, 2007b. SOX9 regulates prostaglandin D synthase gene transcription in vivo to ensure testis development. J Biol Chem 282: 10553-10560.
  • Wilhelm D, Martinson F, Bradford S, Wilson MJ, Combes AN, Beverdam A, et al. 2005. Sertoli cell differentiation is induced both cell-autonomously and through prostaglandin signalling during mammalian sex determination. Dev Biol 287: 111-124.
  • Wilhelm D, Palmer S, Koopman P, 2007c. Sex determination and gonadal development in mammals. Physiol Rev 87: 1-28.
  • Wunderle VM, Critcher R, Hastie N, Goodfellow PN, Schedl A, 1998. Deletion of long-range regulatory elements upstream of SOX9 causes campomelic dysplasia. Proc Natl Acad Sci USA 95: 10649-10654.
  • Yu RN, Ito M, Saunders TL, Camper SA, Jameson JL, 1998. Role of Ahch in gonadal development and gametogenesis. Nat Genet 20: 353-357.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-6fc233db-bf17-48fa-bba2-319622a16c60
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.