PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1998 | 45 | 2 |

Tytuł artykułu

Photochemical labeling of human erythrocyte membrane proteins with radioiodinated 4-azidosalicylic acid derivatives of GM3, GD3, GM1, and FucGM1 gangliosides

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Photoreactive gangliosides of high specific radioactivity may prove useful for studies on glycosphingolipid functions. We prepared 4-azidosalicylic acid (ASA) acylated derivatives of GM3, GD3, GM1, and FucGM1 gangliosides (gangliosides-ASA). Gangliosides-ASA were characterized by their TLC mobility, UV spectra, carbohydrate composition, and digestion with leech endoceramidase. After radioiodination to about 200 Ci/mmole gangliosides-ASA were used for photochemical labeling of human erythrocytes. Radioiodinated gangliosides-ASA were incorporated into erythrocytes in a time and concentration dependent manner, the kinetics and extent of incorporation being similar for all the gangliosides-ASA used. Radioiodinated gangliosides-ASA incorporated into erythrocytes were resistant to trypsin digestion while treatment with 1% BSA removed about 90% of the label. Incubation with cholera toxin protected radioiodinated GM1-ASA and, to a lesser extent, FucGM1-ASA but not GM3-ASA and GD3-ASA, against removal with BSA. After photolysis about 40-50% of radioactivity was firmly bound to erythrocyte lipids and proteins. The ratio of lipid- to protein-bound radioactivity ranged from 2.2:1 to 3.2:1. Photolabeled proteins were analyzed by SDS/PAGE followed by autoradiography. Band 3 was the most extensively photolabeled protein with all the radioiodinated gangliosides-ASA used. DIDS, an inhibitor of band 3 protein activity, caused reduction in photolabeling of this protein by about 20%.

Wydawca

-

Rocznik

Tom

45

Numer

2

Opis fizyczny

p.509-521,fig.

Twórcy

autor
  • Medical Center of Postgraduate Education, Marymoncka 99, 01-813 Warsaw, Poland

Bibliografia

  • 1. Wiegandt, H. (1985) Gangliosides; in New Comprehensive Biochemistry (Wiegandt, H. ed.) vol. 10, pp. 199-260, Elsevier, Amster­dam.
  • 2. Stults, C.L.M., Sweeley, C.C. & Macher, B. (1989) Glycosphingoiipids: Structure, biologi­cal source, and properties. Methods Enzymol. 179, 167-214.
  • 3. Hansson, H.A., Holmgren, H. & Svennerholm, L. (1977) Ultrastructural localization of cell membrane G^j ganglioside by cholera toxin. Proc. NatL Acad. ScL U.S.A. 74, 3782- 3786.
  • 4. MilIer-Podra2a, H., Bradley, R.M. & Fishman, P.H. (1982) Biosynthesis and localization of gangliosides in cultured cells. Biochemistry 21, 3260-3265.
  • 5. Gillard, B.K., Thurmon, L.T. & Marcus, D.M. (1993) Variable subcellular localization of gly­cosphingoiipids. Glycobiology 3, 57-67.
  • 6. Wu, G., Lu, Z. & Ledeen, R.W. (1995) G^i ganglioside in the nuclear membrane modu­lates nuclear calcium homeostasis during neu- rite outgrowth. J. Neurochem. 65,1419-1422.
  • 7. Saqr, H.E., Pearl, D.K. & Yates, A.J. (1993) A review and predictive models of ganglioside uptake by biological membranes. J. Neuro­chem. 61, 395-411.
  • 8. Nagai, Y. (1995) Functional roles of ganglio­sides in bio-signalling. Behav. Brain. Res. 66, 99-104.
  • 9. Hakomori, S. & Igarashi, Y. (1995) Functional role of glycosphingoiipids in cell recognition and signaling. J. Biochem. 118, 1091-1103.
  • 10. Heitger, A. & Ladisch, S. (1996) Gangliosides block antigen presentation by human mono­cytes. Biochim. Biophys. Acta 1303,161-168.
  • 11. Sonnino, S., Chigorno, V., Aquotti, D., Pitto, M., Kirschner, G. & Tettamanti, G. (1989) A photoreactive derivative of Gjjj ganglioside: Preparation and use to establish the involve­ment of specific proteins i^G^ uptake by hu­man fibroblasts in culture. Biochemistry 28, 77-84.
  • 12. Sonnino, S., Chigorno, V., Valsecchi, M. & Tet­tamanti, G. (1992) Specific ganglioside-cell protein interactions: A study performed with G^i ganglioside derivative containing pho- toactivable azide and rat cerebellar granule cells in culture. Neurochem. Int. 20,315-321.
  • 13. Fra, A.M., Masserini, M., Palestini, P., Son­nino, S. & Simons, K. (1995) A photo-reactive derivative of ganglioside G\u specifically cross-links VIP21-caveolin on the cell surface. FEBSUtt. 375, 11-14.
  • 14. Pacuszka, T. & Panasiewicz, M. (1995) Photo­chemical labeling of human erythrocyte mem­branes with radioiodinatable azidosalicylic acid derivative of globoside. Biochim. Biophys. Acta 1257, 265-273.
  • 15. Svermerholm, L. & Fredman, P. (1980) A pro­cedure for the quantitative isolation of brain gangliosides. Biochim. Riophyo. Acta 617, 97-109.
  • 16. Pacuszka, T., Duffard, R.O., Nishimura, R.N., Brady, R.O. & Fishman, P.H. (1978) Biosyn­thesis of bovine thyroid gangliosides. J. Biol Chem. 253, 5839-5846.
  • 17. Bartoszewicz, Z., Koscielak, J. & Pacuszka, T. (1986) Structure of a new disialoganglioside Gj)lc from spontaneous murine thymoma. Carbohydr. Res. 151, 77-88.
  • 18. Schwarzman, G. & Sandhoff, K. (1987) Lyso- gangliosides:synthesis and use in preparing la­beled gangliosides. Methods Enzymol. 138, 319-341.
  • 19. Pinder, J.C., Smith, K.S., Pekrun, A. & Gratzer, W.B. (1989) Preparation and proper­ties of human red-cell ankyrin. Biochem. J. 264, 423-428.
  • 20. Rose, H.G. & Oklander, M. (1965) Improved procedure for the extraction of lipids from hu­man erythrocytes. J. Lipid Res. 6, 428-431.
  • 21. Dodge. J.T., Mitchell, C. & Hanahan, D.J. (1963) The preparation and characterization of hemoglobin free ghosts of human erythro­cytes. Arch. Biochem. Biophys. 100,119-130.
  • 22. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227, 680-685.
  • 23. Magnani, J.L., Smith, D.F. & Ginsburg, V. (1980) Detection of gangliosides that bind cholera toxin: Direct binding of 125I labeled toxin to thin layer chromatograms. Analyt. Biochem 109, 399-402.
  • 24. Zhou, B., Li, S.-C., Laine, R., Huang, R.T.C. & Li, Y-T. (1989) Isolation and characterization of ceramide glycanase from the leech Macrob- delta decora. J. Biol. Chem. 264,12272-12277.
  • 25. Hunter, W.M. & Greenwood, F.C. (1962) Preparation of iodine-131 labelled human growth hormone of high specific activity. Na­ture (London) 194, 495-496.
  • 26. Finkelstein, R.A. (1973) Cholera. CRC Crit Rev. Microbiol. 2, 553-623.
  • 27. Eisingcr, J., Flores, J. & Salhany, J.M. (1982) Association of cytosol hemoglobin with the membrane intact erythrocytes. Proc. NatL AcadI ScL U.S.A. 79, 408-412.
  • 28. Yang, H. & Hakomori, S. (1971) A sphin- golipid having a novel type of ceramide and lacto-N-fucopentose III. J. Biol. Chem. 246, 1192-1200.
  • 29. Merkle, R.K. & Poppe, I. (1994) Carbohydrate compositional analysis of glycoconjugates by gas-liquid chromatography/mass spectrome­try. Method? Enzymol. 230, 1-15.
  • 30. Dubois, M., Gilles, K.A., Hamilton, J.K., Re- bers, P.A. & Smith, F. (1956) Colorimetric method for determination of sugars and re­lated substances. Analyt. Chem. 28,350-353.
  • 31. Fishman, P.H. (1990) Mechanism of action of cholera toxin; in ADP-ńbosylating Toxins and G Proteins: Insights into Signal Transduction (Moss, J. & Vaughan, M., eds.) pp. 127-140, American Society for Microbiology, Washing­ton.
  • 32. Masserini, M., Freire, E., Palestini, P., Ca- lappi, E. & Tettamanti, G. (1992) Fuc-G^ mimics the receptor function of G^i for chol­era toxin. Biochemistry 31, 2422-2426.
  • 33. Nakamura, M., Ogino, H.. Nojiri, H., Kita- gawa, S. & Saito, M. (1989) Characteristic in­corporation of ganglioside Gm3 which induces monocytic differentiation in human myelogen­ous leukemia HL-60 cells. Biochem. Biophys. Res. Commun. 161, 782-789.
  • 34. Berkhout, T.A., Van Amerongen, A. & Wirtz, K.W.A. (1984) Labeling of phospholipids in vesicles and human erythrocytes by photoacti- vable fatty acid derivatives. Eur. J. Biochem. 142, 91-97.
  • 35. Fairbanks, G., Steck, Th. & Wallach, D.F.H. (1971) Electrophoretic analysis of the major peptides of the human erythrocyte membrane. Biochemistry 10. 2606-2617.
  • 36. Reithmeier, R.A.F. (1993) The erythrocyte an­ion transporter (band 3). Curr. Opin. Struct Biol 3, 515-523.
  • 37. Hanicak, A., Maretzki, D., Reimann, B., Pap, E., Visser, A.J.G., Wirtz, K.W.A. & Schubert, D. (1994) Erythrocyte band 3 protein strongly interacts with phosphoinositides. FEBS Lett. 348, 169-172.
  • 38 Vondenhof, A., Oslender, A., Deuticke, B. & Haest, C.W.M. (1994) Band 3, an accidental flippase for anionic phospholipids? Biochemis­try 33,4517-4520.
  • 39.Serra, M.V., Kamp, D. & Haest, W.M. (1996) Pathways for flip-flop of mono- and di-anionic phospholipids in the erythrocyte membrane. Biochim. Biophys. Acta 1282, 263-273.
  • 40. Cabantchik, Z.I. & Greger, R. (1992) Chemical probes for anion transporters of mammalian cell membranes. Am. J. Physiol 262, C805- C827.
  • 41. Brunner, J. (1989) Photochemical labeling of apolar phase of membranes. Methods EnzymoL 172, 628-687.
  • 42.Schopfer, L.M. & Salhany, J.M. (1995) Charac­terization of the stilbenedisulfonate binding site on band 3. Biochemistry 34, 8320-8329.
  • 43. Rodgers, W. & Glaser, M. (1993) Distribution of proteins and lipids in the erythrocyte mem­brane. Biochemistry 32, 12591-12598.
  • 44. Peters, L.L., Shivdasani, R.A., Liu, S.-C., Hanspal, M., John, K.M., Gonzalez, J.M., Brugnara, C., Gwynn, B., Mohandas, N., Alper, S.L., Orkin, S. & Lux. S.E. (1996) Anion exchanger 1 (band 3) is required to prevent erythrocyte membrane surface loss but not to form the membrane cytoskeleton. Cell 86, 917-927.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-6f903025-30f7-4642-a3d9-7e363d5d79c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.