PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 64 | 03 |

Tytuł artykułu

Budowa i funkcjonowanie ukladu odpornosciowego u ptakow

Warianty tytułu

EN
Structure and function of the avian immune system in birds

Języki publikacji

PL

Abstrakty

EN
Birds are interesting and relatively easy model to research due to their embryonic development taking place outside the organism of the parent. The many similarities in the structure and function of the immunological system of birds and mammals are conducive to forming research analogies and using these diverse models to investigate immunological functions. During embryogenesis there is a three-phase-process of maturation and differentiation of B lymphocytes in the bursa Fabricius - a unique organ of birds. After hatching, bursal follicles consist of B lymphocytes (85-95%) and approx. 4% T lymphocytes. B lymphocytes are able to generate a wide scale of antibodies of three classes: IgM, IgY and IgA. The thymus gland determines the micro-environment for differentiating T lymphocytes which colonize the germ of this organ in waves in the form of precursor cells from the marrow during embryonic development. These cells may become transformed both into lymphocytes αβT, or γδT. The migration of diverse T cells from the thymus gland to the circuit lasts several weeks after hatching. Depending on the type of receptor, TCR is distinguished in birds by TCR1 cells (γδ), TCR2 cells and TCR3 cells (αβ). The main effector cells in both chickens and mammals are lymphocytes CD3⁺αβ TCR⁺ T cells. Three classes of membranous antigens MHC qualified as B-F, B-L and B-G act to distinguish foreign antigens from those belonging to the recipient. Macrophages are the first line of defense against infections (the preparation of the antigen and the presentation of its fragments to lymphocytes T in the context of I and II class MHC proteins). Heterophiles have the primary defense function against bacteria in the respiratory system of birds and migrate there in the moment of infection. Hormones play a large part in regulating the development and function of the immune system in birds. Cells of the immunological system in birds possess receptors for many hormones on their surface.

Wydawca

-

Rocznik

Tom

64

Numer

03

Opis fizyczny

s.265-268,bibliogr.

Twórcy

autor
  • Uniwersytet Warminsko-Mazurski w Olsztynie, ul.Oczapowskiego 13, 10-957 Olsztyn
autor
autor

Bibliografia

  • 1.Akiko T., Piccirillo C. A.: Development and function of naturally occurring CD4⁺CD25⁺ regulatory T cells. J. Leuk. Biol. 2006, 80, 458-470.
  • 2.Andreasen C. B., Latimer K. S., Steffans W. L.: Evaluation of chicken heterophil adherence. Avian Dis. 1990, 34, 639-642.
  • 3.Arstila T. P., Vainio O., Lassila O.: Central role of CD4+ T cells in avian immune response. Poult. Sci. 1994, 73, 1019-1026.
  • 4.Bar-Shira E., Friedman A.: Ontogeny of gut associated immune competence in the chick. Israel J. Vet. Med. 2005, 60, 42-50.
  • 5.Bridle B. W., Julian R., Shewen P. A., Vaillancourt J.-P., Kaushik A. K.: T lymphocyte populations diverge in commercially raised chickens. Can. J. Vet. Res. 2006, 70, 183-190.
  • 6.Chen C. H., Göbel T. W. F., Kubota T., Coope N.: T cell development in the chicken. Poult. Sci. 1994, 73, 1012-1018.
  • 7.Davison T. F.: The immunologist's debt to the chicken. Br. Poult. Sci. 2003, 44, 6-21.
  • 8.Dietert R. R., Golemboski K. A.: Avian macrophage metabolism. Poult. Sci. 1998, 77, 990-997.
  • 9.Ewald S. J., Livant E. J.: Distinctive polymorphism of chicken B-FI (major histocompatibility complex class I) molecules. Poult. Sci. 2004, 83, 600-605.
  • 10.Frey O., Bräuer R.: Regulatory T cells: magic bullets for immunotherapy? Arch. Immunol. Ther. Exp. 2006, 54, 33-43.
  • 11.Gehad A. E., Lillehoj H. S., Hendricks G. L., Mashaly M. M.: Initiation of humoral immunity. I. The role of cytokines and hormones in the initiation of humoral immunity using T-independent and T-dependent antigen. Dev. Comp. Immunol. 2002, 26, 751-759.
  • 12.Glick B., Olah I.: Bursal secretory dendritic-like cell: a microenvironment tissue. Poult. Sci. 1993, 72, 1262-1266.
  • 13.Greenman Ch. G., Martin II. L. B., Hau M.: Reproductive state, but not testosterone, reduces immune function in male house sparrows (Passer domesticus). Physiol. Biochem. Zool. 2005, 78, 60-68.
  • 14.Grindstaff J. L., Hasselquist D., Nilsson J. K., Sandell M., Smith H. G., Stjernman M.: Transgenerational priming of immunity: maternal exposure to a bacterial antigen enhances offspring humoral immunity. Proc. Biol. Sci. 2006, 273, 2551-2557.
  • 15.Harmon B. G., Glisson J. R., Nunnaly J. C.: Turkey macrophage and heterophile bactericidal activity against Pasteurella multocida. Avian Dis. 1992, 36, 386-391.
  • 16.Kim I.-J., Sou S. K., Kim H., Yeuh H.-Y., Sharman J. M.: Characteristix of bursal T limphocytes induced by Infection Bursal Disease Virus. J. Virol. 2000, 74, 8884-8892.
  • 17.Kaiser M. G., Cheeseman J. H., Kaiser P., Lamont S. J.: Cytokine expression in chicken peripheral blood mononuclear cells after in vitro exposure to Salmonella enterica serovar enteritidis. Poult. Sci. 2006, 85, 1907-1911.
  • 18.Kaufman J., Salomonsen J.: The "Minimal essential MHC" revisited: both peptide-binding and cell surface expression level of MHC molecules are polymorphisms selected by pathogen in chickens. Hereditas 1997, 127, 67-73.
  • 19.Kogut M. H., Lowry V. K., Moyes R. B., Bowden L. L., Bowden R., Genovese K., Deloach J. R.: Lymphokine-augmented activation of avian heterophils. Poult. Sci. 1998, 77, 964-971.
  • 20.Kogut M. H., Swaggerty C., He H., Peyzner I., Kaiser P.: Toll-like receptor agonists stimulate differential functional activation and cytokine and chemokine gene expression in heterophils isolated from chickens with differential innate responses. Microbes Infect. 2006, 8, 1866-1874.
  • 21.Lundqvist M. L., Middleton D. L., Radford C., Warr G. W., Magor K. E.: Immunoglobulins of the non-galliform birds: antibody expression and repertoire in the duck Dev. Comp. Immunol. 2006, 30, 93-100.
  • 22.Magor K. E., Warr G. W., Bando Y., Middleton D. L., Higgins D. A.: Secretory immune system of the duck (Anas platyrhynchos). Identification and expression of the genes encoding IgA and IgM heavy chains. Eur. J. Immunol. 1998, 28, 1063-1068.
  • 23.Marsh J. A., Scanes C. G.: Neuroendocrine-immune interactions. Poult. Sci. 1994, 73, 1049-1061.
  • 24.Masteller E. L.: B cell development in the chicken. Poult. Sci. 1994, 72, 1289-1293.
  • 25.Mc Graw K. J., Ardia D. R.: Sex differences in carotenoid status and immune performance in zebra finches. Evolution. Ecol. Res. 2005, 7, 251-262.
  • 26.Mc Graw K. J., Crino O. L.: Effect of dietary carotenoid supplementation on food intake and immune function in a songbird with no carotenoid coloration. Ethology 2006, 112, 1209.
  • 27.Millet S., Bennett J., Lee K. A., Hau M., Klasing K. C.: Quantifying and comparing constitutive immunity across avian species. Dev. Comp. Immunol. 2007, 31, 188-201.
  • 28.Paramithiotis E., Ratcliffe M. J. H.: Survivors of bursal B cells production and emigration. Poult. Sci. 1994, 73, 991-997.
  • 29.Plachy J., Pink J. R., Hala K.: Biology of the chicken MHC (B complex). Crit. Rev. Immunol. 1992, 12, 47-79.
  • 30.Qureshi M. A.: Role of macrophages in avian health and disease. Poult. Sci. 1998, 77, 978-982.
  • 31.Qureshi M. A., Hussain I., Heggen C. L.: Understanding immunology in diseases development and control. Poult. Sci. 1998, 77, 1126-1129.
  • 32.Saita E., Hayama S., Kajigaya H., Yoneda K., Watanabe G., Taza K.: Histologic changes in thyroid glands from great cormorant (Phalacrocorax carbo) in Tokyo Bay, Japan: possible association with environmental contaminants. J. Wild. Dis. 2004, 40, 763-768.
  • 33.Salaün J., Corbel C., Le Douarin N. M.: Regulatory T-cells in the etablishmentand maintenance of self tolerance: role of the thymic epithelium. Int. J. Dev. Biol. 2005, 49, 137-142.
  • 34.Sembrat K.: Histologia porównawcza zwierząt. T. II. PWN, Warszawa 1981.
  • 35.Seto F.: Early development of the avian immune system. Poult. Sci. 1981, 60, 1981-1995.
  • 36.Sharma J. M.: The structure and function of avian immune system. Acta Vet. Hungar. 1997, 45, 229-238.
  • 37.Smith J. E., Fernie K. J., Bortolotti G. R., Marchant T. A.: Thyroid hormone suppression and cell-mediated immunomodulation in American kestrels (Falco sparverius) exposed to PCBs. Arch. Environ. Contam. Toxicol. 2002, 43, 338-344.
  • 38.Thornton A. M., Donovan E. E., Piccirillo C. A., Shevach E. M.: Cutting edge: IL-2 is critically required for the in vitro activation of CD4⁺ CD25⁺ T cell suppressor function. J. Immunol. 2004, 172, 6519-6523.
  • 39.Thornton A. M., Shevach E. M.: Suppressor effector function of CD4⁺CD25⁺ immunoregulatory T cells is antigen nonspecific J. Immunol. 2000, 164, 183-190.
  • 40.Toth T. E., Veit H., Gross W. B., Siegel P. B.: Cellular defense of the avian respiratory system: protection against Escherichia coli airsacculitis by Pasteurella multocida-activate respiratory phagocytes. Avian Dis. 1988, 32, 681-687.
  • 41.Wei S., Kryczek I., Zou W.: Regulatory T-cell compartmentalization and trafficking. Blood 2006, 108, 426-431.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-6f6b6f30-6574-4f97-8ed1-1837602ed7af
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.