PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 66 | 05 |

Tytuł artykułu

Molekularny mechanizm dzialania bisfosfonianow i ich zastosowanie w praktyce klinicznej

Warianty tytułu

EN
Molecular mechanism of the action of bisphosphonates and its role in clinical practice

Języki publikacji

PL

Abstrakty

EN
Bisphosphonates are a unique class of drugs. As a family they are characterized pharmacologically by their ability to inhibit bone resorption, whereas, pharmacokinetically, they are classified by their similarity in absorption, distribution and elimination. Bisphosphonates have become the most important class of antiresorptive drugs, not only for the treatment of Paget’s disease, but also for other diseases that involve excessive osteoclast-mediated bone resorption, such as tumor-induced osteolysis and hypercalcemia as well as osteoporosis. Although all bisphosphonates have similar psychochemical properties, their antiresorbing activities differ substantially. The structure of the R2 side chain is the major determinant of antiresorptive potency, both phosphonate groups are also required for the drugs to be active. Activity is dramatically increased when the amino group is contained in the aliphatic carbon chain. They act by inhibiting the enzyme farnesyl diphosphate synthase. Despite this, the molecular mode of their action is still not clear. There is substantial evidence that BPs can have a direct effect on osteoclasts by mechanisms that may lead to osteoclast cell death by apoptosis. BPs can also inhibit proliferation and cause cell death in macrophages in vitro. It has been shown that the toxic effect of BPs on macrophages is also due to the induction of apoptotic, rather than necrotic, cell death. Bisphosphonates may inhibit osteoclast-mediated bone resorption by several routes, although a direct effect on mature osteoclasts is the most likely. Bisphosphonates perturb cellular metabolism and induce osteoclast apoptosis. The molecular mechanisms by which these effects are brought about are only now becoming clear. The simple bisphosphonates that closely resemble pyrophosphonates (such as clodronate, etidronate and tiludronate) can be metabolically incorporated into non-hydrolysable analogues of ATP that accumulate intracellularly in osteoclasts, resulting in the induction of osteoclast apoptosis. The more potent, nitrogen-containing bisphosphonates (such as pamidronate, alendronate, risedronate, ibandronate and zoledronate) appear to act as analogues of isoprenoid diphosphate lipids, thereby inhibiting FPP synthase, an enzyme in the mevalonate pathway. Inhibition of this enzyme in osteoclasts prevents the biosynthesis of isoprenoid lipids (FPP and GGPP) that are essential for the post-translational farnesylation and geranylgeranylation of small GTPase signaling proteins. Loss of bone-resorptive activity and osteoclast apoptosis is primarily due to the loss of geranylgeranylated small GTPases.

Wydawca

-

Rocznik

Tom

66

Numer

05

Opis fizyczny

s.307-310,bibliogr.

Twórcy

autor
  • Uniwersytet Przyrodniczy we Wroclawiu, ul.Kozuchowska 5, 51-631 Wroclaw
autor
autor

Bibliografia

  • 1. Astrom E., Soderhall S.: Beneficial effect of bisphosphonate during five years of treatmen of severe osteogenesis imperfecta. Acta Paediatr. 1998, 87, 64-68.
  • 2. Barnett B. L., Strickland L. C.: Structure of disodium dihydrogen 1-hydroxyethylidenediphosphonate tetrahydrate: a bone growth regulator. Acta Cryst. 1979, B35, 1212-1214.
  • 3. Barrett M. P.: The fall and rise of sleeping sickness. Lancet 1999, 353, 1113-1114.
  • 4. Bembi B., Parma A., Bottega M., Ceschel S., Zanatta M., Martini C., Ciana G.: Intravenous pamidronate treatment in osteogenesis imperfecta. J. Pediatr. 1997, 131 (4), 622-625.
  • 5. Berenson J. R., Lichtenstein A., Porter L., Dimopoulos M. A., Bordoni R., George S.: Myeloma Aredia Study Group. Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. N. Engl. J. Med. 1996, 334, 488-530.
  • 6. Berenson J. R., Rosen L. S., Howell A., Porter L., Coleman R. E., Marley W., Dreicer R., Kuross S. A., Lipton A., Seaman J. J.: Zoledronic acid reduces skeletal-related events in patients with osteolytic métastases. Cancer 2001, 91, l191-1200.
  • 7. Body J. J.: Treatment and prevention of bone métastases and myeloma in bone disease, [w:] Favus M. J. (wyd.): Primer on the metabolic diseases and disorders of mineral metabolism. Washington, DC, American Society for Bone and Mineral Research 2006, 383-390.
  • 8. Body J. J., Diel I. J., Lichinitser M. R., Kreuser E. D., Dornoff W., Gorbunova V. A., Budde M.: Intravenous ibandronate reduces the incidence of skeletal complications in patients with breast cancer and bone métastases. Ann. Oncol. 2003, 14, 1399-1405.
  • 9. Brumsen C., Neveen A., Hamdy T., Papapoulos S. E.: Long-term effects of bisphosphonates on the growing skeleton. Medicine 1997, 76, 266-283.
  • 10. Demons M. J., Dranitsaris G., Ooi W. S. i wsp.: Phase II trial evaluating the palliative benefit of second-line zoledronic acid in breast cancer patients with either a skeletal-related event or progressive hone métastases despite first-line bisphosphonate therapy. Clin. Oncol. 2006, 24, 4895-4900.
  • 11. Drake M. T., Clarke B. L., Khosla S.: Bisphosphonates: Mechanism of action and role in clinical practice. Mayo Clin. Proc. 2008, 83, 1032-1045.
  • 12. Dunford J. E., Thompson K., Coxon F. P., Luckman S. P., Hahn F. M., Poulter C. D., Ebetino F. H., Rogers M. J.: Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates. J. Pharmacol Exp. Ther. 2001, 296, 235-242.
  • 13. Ebetino F. H., Dansereau S. M.: Bisphosphonate antiresorptive structure-activity relationships, [w:] Bijvoet O., Fleisch H. A., Canfield R. E., Russell G. (wyd.): Bisphosphonates on Bones. Amsterdam: Elsevier Science B. V., 1995, 139-153.
  • 14. Fleisch H.: Bisphosphonates in Bone Disease. The Parthenon Publ. Group, New York 1997.
  • 15. Fleisch H.: Bisphosphonates - pharmacology and use in the treatment of tumor-induced hypercalcemic and metastatic bone-disease. Drugs 1991, 42, 919-944.
  • 16. Galus K., Jaworski Z., Włodarski K.: Choroby metaboliczne kości. Med. Tour Press International, Wyd. Medyczne, Warszawa 1994.
  • 17. Kauffman R. P., Overton T. H., Shiflett M., Jennings J. C.: Osteoporosis in children and adolescent girls: case raport of idiopathic juvenile osteoporosis and review of the literature. Obstet. Ginecol. Surv. 2001, 56, 492-504.
  • 18. Kavanagah K. L., Guo K., Dunford J. E., Wu X., Knapp S., Ebetino F. H., Rogers M. J., Russell R. G., Oppermann U.: The molecular mechanism of nitrogen-containing bisphosphonates as antiosteoporosis drugs. Proc. Natl. Acad. Sci. USA 2006, 16, 103, 7829-7334, Epub. 2006.
  • 19. Kraśkiewicz E, Lorenc R. S.: Mechanizmy działania bisfosfonianów i ich zastosowanie kliniczne. Standardy Medyczne 2007, 4, 130-136.
  • 20. Lane K. T., Beese L. S.: Thematic review series: lipid posttranslation modifications. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type I. J. Lipid Res. 2006, 57, 691-699.
  • 21. Loba-Jakubowska E.: Bisfosfoniany - nadzieja na skuteczne leczenie osteoporozy w wieku rozwojowym. Przegl. Pediatr. 2003, 33, 261-264.
  • 22. Montalvetti A., Bailey B. N., Martin M. B., Severin G. W., Oldfield E., Docampo R.: Bisphosphonates are potent inhibitors of Trypanosoma cruzi farnesyl pyrophosphate synthase. J. Biol. Chem. 2001, 276, 33930-33937.
  • 23. Marcinowska-Suchowierska E. (red.): Osteoporoza - diagnostyka, profilaktyka i leczenie. Wyd. Lekarskie PZWL, Warszawa 1999.
  • 24. Martin M. B., Grimley J. S., Lewis J. C., Heath H. T., Bailey B. N., Kendrick H., Yardley V., Caldera A., Lira R., Urbina J. A., Moreno S. N. J., Docampo R., Croft S. L., Oldfield E.: Bisphosphonates inhibit the growth of Trypanosoma brucei, Trypanosoma cruzi, Leishmania donovani, Toxoplasma gondii, and Plasmodium falciparum: a potential route to chemotherapy. J. Med. Chem. 2001, 44, 909-916.
  • 25. Martin M. B., Sanders J. M., Kendrick H., de Luca-Fradley K., Lewis J. C., Grimley J. S., van Brussel E. M., Olsen J. R., Meints G. A., Burzyñska A., Kafarski P., Croft S. L., Oldfield E.: Activity of bisphosphonates against Trypanosoma brucei rhodesiense. J. Med. Chem. 2002, 45, 2904-2914.
  • 26. Roelofs A. J., Thompson K., Gordon S., Rogers M. J.: Molecular mechanisms of action of bisphosphonates: current status. Clin. Cancer Res. 2006, 20, 6222.
  • 27. Rogers M. J., Xiong X., Ji X., Mönkkönen J., Russel R. G. G., Williamson M. P., Ebetino F. H., Watts D. J.: Inhibition of growth of Dictyostelium discoideum amoebae by bisphosphonate drugs is dependent on cellular uptake. Pharm. Res. 1997, 14, 625-630.
  • 28. Rogers M. J.: New insights into the molecular mechanisms of action of bisphosphonates. Curr. Pharm. Des. 2003, 9, 2643-2658.
  • 29. Rosen L. S., Gordon D., Tchekmedyian N. S., Yanagihara R., Hirsh V., Krzakowski M., Pawlicki M., De Souza P., Zheng M., Urbanowitz G., Reitsma D., Seaman J.: Long-term efficacy and safety of zoledronic acid in the treatment of skeletal metastases in patients with nonsmall cell lung carcinoma and other solid tumors: a randomized. Phase III, double-blind, placebo-controlled trial. Cancer 2004, 100, 2613-2621.
  • 30. Thompson K., Rogers M. J., Coxon F. P., Crockett J. C.: Cytosolic entry of bisphosphonate drugs requires acidification of vesicles after fluid-phase endocytosis. Mol. Pharmacol. 2006, 69, 1624-1632.
  • 31. Urbina J. A., Moreno B., Vierkotter S., Oldfield E., Payares G., Sanoja C., Bailey B. N., Yan W., Scot D. A., Moreno S. N., Docampo R.: Trypanosoma cruzi contains major pyrophosphate stores, and its growth in vitro and in vivo is blocked by pyrophosphate analogs. J. Biol. Chem. 1999, 274, 33609-33615.
  • 32. Zacharian M., Bateman J.: Pamidronate treatment of osteogenesis imperfecta - lack of correlation between clinical severity, age of onset of treatment, predicted collagen mutation and treatment response. J. Pediatr. Endocrinol. Metab. 2002, 15, 163-174.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-6dbd98fa-b4fc-45ad-a316-69dc36cc5849
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.