PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2000 | 29 |

Tytuł artykułu

Statystyczno-fizyczne modele przeplywu masy i energii w osrodku porowatym

Autorzy

Treść / Zawartość

Warianty tytułu

Statistical-physical models of mass and energy transfer in porous medium

Języki publikacji

PL

Abstrakty

EN
he exchange of mass and energy taking place in a porous medium is the main goal of studies of many scientific branches and agrophysics belongs to them. This process is measured and calculated as the quantity of mass and energy transferred from one thermodynamic system to another and is to be determined on the basis of its transport properties. A new statistical model of the mass and energy transfer has been formulated in this paper on the bases of the most fundamental conceptions and ideas of mechanics, thermodynamics and electrodynamics. This new model makes possible the description of connection between the properties of the porous medium and the directly measured physical values. The model enabled for consideration of the following porous medium properties:electrical properties of the porous medium from the viewpoint of determination of its salinity on the basis of the measured bulk electrical conductivity and determination of its moisture content from the measurement of the porous medium dielectric constant, hydraulic, pneumatic and diffusive properties of porous medium resulting in determination of its gas and water conductivity as well as in determination of its diffusivity from the water retention curves, thermal properties of the porous medium leading to determination of its thermal conductivity from the basic properties of solid, liquid and gas phases forming this medium. The calculations based on this new statistical model and comparison of the calculated results with the data measured as well as statistical analysis can be a basis to the statement, that this model predicts the mass and energy transfer with the satisfactory accuracy. This procedure confirms correctness of the assumptions introduced and simplifications used during its construction as well as permits for the statement that the parameters were fitted properly.

Wydawca

-

Czasopismo

Rocznik

Tom

29

Opis fizyczny

s.1-112,rys.,tab.,wykr.,bibliogr.

Twórcy

autor
  • Instytut Agrofizyki PAN, Lublin

Bibliografia

  • 1. Abu-EI Sha'r W., Abriola L.M.: Experimental assessment of gas transport mechanisms in natural porous media: Parameter evaluation. Water Resour. Res. 33, 505-516, 1997.
  • 2. Adamson A.W.: Chemia fizyczna powierzchni. PWN, Warszawa, 382-387, 1963.
  • 3. Ahuja L.R., El-Swaify S.A.: Determining both water characteristics and hydraulic conductivity of a soil corc at water content from a transient flow experiment. Soil Sci., 121, 198-204, 1976.
  • 4. Ahuja L.R., Barnes B.B., Cassel D.K., Bruce R.R., Nofiiger D.L.: Effect of assumed unit gradient during drainage on the determination of unsaturated hydraulic conductivity and infiltration parameters. Soil Sci., 145, 235-243, 1988.
  • 5. Ahuja L.R., Cassel D.K., Bruce R.R., Barnes B.B.: Evaluation of spatial distribution of hydraulic conductivity using effective porosity data. Soil Sci., 148, 404-411, 1988.
  • 6. Ahuja L.R., Williams R.D.: Scaling water characteristic and hydraulic conductivity based on Gregson-Ilector-McGowen approach. Soil Sci. Soc. Am, J., 55, 308-319, 1991.
  • 7. Akhtyrtsev B.P,, Lepilin I.A.: Hydraulic characteristics od ordinary chernozems of the south Russian steppe under various types of utilization. Pochvovedeniye, 3, 66-79, 1991.
  • 8. Anselm A.,I.: Podstawy fizyki statystycznej i termodynamiki. PWN, Warszawa, 310-316, 1980,
  • 9. Ansoult M., De Backer LAV., Declercq M.: Statistical relationship between apparent dielectric constant and water content in porous media. Soil Sci. Soc. Am. J. 49, 47-50. 1985.
  • 10. Arah .I.R.M., Ball B.C.: A functional model of soil porosity used to interpret measurements of gas diffusion. European J. Soil Sci., 45, 135-144, 1994.
  • 11. Arbie W.C., Shaw M.D.: Bibliography on the methods for determining soil moisture. Eng. Res. Bull. B-78, Coll. Of Eng. End. Arch., Univ. Park, Penn, 1959.
  • 12. Assouline S., Tavares-Filho J., Tessier D.: Effect of compaction on soil physical and hydraulic properties: Experimental results and modeling. Soil Sci. Soc, Am. J., 61, 390-398, 1997.
  • 13. Ball B.C., Harris W., Burford J.R.: A laboratory method to measure gas diffusion and flow in soil and other porous materials, J. Soil Sci., 32, 323-333, 1981.
  • 14. Ball B.C.: Modelling of soil pores as tubes using gas permeabilities, gas diffusivities and water release. J. Soil Sci., 32, 465-481, 1981.
  • 15. Ball B.C.: Pore characteristics of soils from two cultivation experiments as shown by gas diffusivities and permeabilities and air-filled porosities. J. Soil Sci., 32, 483-498,1981.
  • 16. Bear J., Braester C., Menier P.C.: Effective and relative permeabilities of anisotropic porous media. Transport in Porous Media, 2, 301-316, 1987.
  • 17. Birchak J. R., Gardner C. G., Hipp J, E., Victor J. M.: High dielectric constant microwave probes for sensing soil moisture. Proc. of the IEEE, 62(1), 93-98, 1974.
  • 18. Bird N.R.A., Rartoli F., Dexter A.R.: Water retention models for fractal soil structures. European J, Soil Sci., 47, 1-6, 1996,
  • 19. Bird T.I„ Willis T.M., Melville G.J.: Subsoil hydraulic conductivity estimates for the Lower Macquarie Valley. Aust. J. Soil Res., 34, 213-228, 1996.
  • 20. Bird N.R.A., Dexter A.R.: Simulation of soil water retention using random fractal networks. European J, Soil Sci., 48, 633-641, 1997.
  • 21. Blunt M., King P.: Relative permeabilities from two- and three-dimensional pore-scale network modelling. Transport in Porous Media, 6, 407-433, 1991.
  • 22. Bodrov V.A., Globus A.M.: Field measurements of hydrophysical soil properties with the field sorption in fil tro meter. Pochvovedeniye, 11, 81-85, 1993.
  • 23.Boels D., vail Gils J.B.H.M., Vccrman G.J., Wit K.E.: Theory and system o I automatic determination of soil moisture characteristics and unsaturated hydraulic conductivities. Soil Sei,, 126, 191-199, 1978.
  • 24.Bohl H., Roth K.: Evaluation of dielectric mixing models to describe the Ø(ε) - relation. Special Publication SP 19-94, Symposium and Workshop on TDR in Environmental, Infrastructure, and Mining Applications. Northwestern University, Evans ton, USA, 309-319, 1994.
  • 25.Bohne K., Roth C., Leij F.J,t van Genuchten M.Th.: Rapid method tor estimating the unsaturated hydraulic conductivity from infiltration measurements. Soil Sci., 155, 237-244, 1993.
  • 26.Brooks R.H., Corey A.T.: Hydraulic properties of porous media. Hydrology papers. Colorado State University, Fort Collins, Colorado, 3, 1-27, 1964.
  • 27.Bruckler L,, Ball B.C., Renault P.: Laboratory estimation of gas diffusion coefficient and effective porosity in soil. Soil Sci., 147, 1-10, 1989.
  • 28.Cameron D.R.: Variability of soil water retention curves and predicted hydraulic conductivities on small plot. Soil Sci., 126, 364-371, 1978.
  • 29.Campbell G.S.: A simple method for determining unsaturated conductivity from moisture retention data, Soil Sci., 117,311-314, 1974.
  • 30.Campbell G.S.: Soil physics with basic. Transport models for soil-plant systems, Elsevier, Amsterdam, pp. 147, 1985.
  • 31.Carvallo H.O., Cassel D.K., Hammond J., Bauer A.: Spatial variability in situ unsaturated hydraulic conductivity of maddock sandy loam. Soil Sci,, 121, 1-8, 1976.
  • 32.Caussade B.H., Dournes G., Renard G.: A new numerical solution of unsteady tow- dimensional flow in unsaturated porous media. Soil Sci., 127, 193-201, 1979.
  • 33.Chelkowski A.: Fizyka dielektryków. PIW, Warszawa, 1972.
  • 34.Collins-George N.: Relationship between air and water permeabilities in porous media. Soil Sci,, 76, 239-250, 1953.
  • 35.Cook F..T., Broeren A.: Six method for determining sorptivity and hydraulic conductivity with disc permeameters. Soil Sci,, 157, 2-11, 1994.
  • 36.Crawford J.W.: The relationship between structure and the hydraulic conductivity of soil. European J. Soil Sci., 45, 493-502, 1994.
  • 37.Crawford J.W., Matsui N., Young I.M.: The relation between the moisture-release curve and the structure of soil. European J, Soil Sci., 46, 369-375, 1995,
  • 38.CRC handbook of chemistry and physics (ed. R.C. Wheast). CRC Press Inc. Boca Raton. Florida. USA, 1979.
  • 39.Cresswell H.P., Smiles D.E., Williams J.: Soil structure, hydraulic properties and the soil water balance. Aust. J. Soil Res., 30, 265-283, 1992.
  • 40.Cresswell H.P.: A sensivity analysis of the Jackson method of predicting unsaturated hydraulic conductivity. Aust. J. Soil Res., 30, 285-290, 1992.
  • 41.Cresswell H.P., Paydar Z.: Water retention in Australian soils. 1. Description and prediction using parametric functions. Aust. J. Soil Res., 34, 195-212, 1996,
  • 42.Currie J.A.: Gaseous diffusion in the aeration of aggregated soils. Soil Sci., 92, 40-45, 1961.
  • 43.Currie J,A,: Diffusion within soil microstructure a structural parameter for soils, J. Soil Sci., 16, 279-289, 1965.
  • 44.Czachor H.: Geometria fazy stałej i przestrzeni porów w rolniczych ośrodkach granutarnych na przykładzie gleby mineralnej. Rozprawa habilitacyjna, Acta Agrophysica 7, Instytut Agrofizyki PAN, Lublin, 1-80, 1997.
  • 45.Czernawski D., Skrzypczak E.: Modelowanie matematyczne procesów biologicznych. Encyklopedia fizyki współczesnej. PWN, Warszawa, 803-814, 1983.
  • 46.Czudnowski A.F, Miczurin E.N., Mielnikowa M.K., Moszkow B.S., Pojasow N.P., Wierszynin P.W.: Podstawy Agrofizyki. PWRiL Warszawa, 1967.
  • 47.Dalton K.N., Herkelrath W.N., Rawligs D.S., Rhoades J.D.: Time-domain reflectometry simultaneous measurement of soil water content and electrical conductivity with a single probe. Science, 224, 989-990, 1984,
  • 48.Dalton F.N., van Genuchten M.Th.: The time-domain reflectometry method for measuring soil water content and salinity. Geoderma, 38, 237-250, 1986,
  • 49.Dasberg S., Dalton F.N,: Time domain reflectometry field measurements of soil water content and electrical conductivity. Soil Sei. Soc. Am. J., 4, 293-297, 1985.
  • 50.Davis J.L., Cliudobiak W.J.: In situ meter for measuring relative permittivity of soils. Geol. Surv. Can. Paper 75-1 A: 75-79. 1975.
  • 51.Davis J.L., Annan A,P.: Electromagnetic detection of soil moisture: progress report I. Canadian Journal of Remote Sensing, 3, 76-86, 1977,
  • 52.Dechnik I., Lipiec J.: Przewodnictwo wodne gleby w strefie nienasyconej i metody jego pomiaru. Problemy Agrofizyki 32, Zakład Narodowy im, Osslińskich, Wrocław, 1-72, 1980.
  • 53.Dechnik I., Stawiński .].: Powierzchnia właściwa w badaniach fizykochemicznych i chemicznych. Problemy Agrofizyki 6, Zakład Narodowy im. Osslińskich, Wrocław, 1973.
  • 54.de Vries, D.A.: Thermal properties of soils. In W,R. van Wijk (ed.) Physics of plant environment. North-Holland, Amsterdam, 210-235, 1963.
  • 55.de Vries D.A.: Heat transfer in soils. In Heat and mass transfer in the biosfere. dc Vries, D.A. and N.A. Afgan (ed.). Washington, 6-28, 1975.
  • 56.de Vries D.A.: A critical analysis of the c al o ri metric method for determining the heat flux in soils. Proc. 8-th InL. Heat Transfer Conf. Hemiphen Publ. Corp. Washington, 2, 473-476, 1986.
  • 57.de Vries D.A.: The theory of heat and moisture transfer in porous media revisited. Int. J. Heat Mass Transfer, 30(7), 1343-1350, 1987.
  • 58.Dirksen C., Dasberg S.: Improved calibration of Time Domain Reflectometry soil water content measurements. Soil Sci. Soc. Am. J., 57, 660-667, 1993.
  • 59.Dobson M.C., Ulaby F.T., Hallikainen M.T., El-Rayes M.A.: Microwave dielectric behavior of wet soil - Part II; Dielectric mixing models. TEEE Transactions on Gcoscience and Remote Sensing, GE-23, 35-46, 1985.
  • 60.Domżał H.: Zagęszczenie fazy stałej i jego rola w kształtowaniu wodno-powietrznych właściwości gleb. Rozprawa habilitacyjna. AR, Lublin I, 1-194, II, 1-166, 1977.
  • 61.Douglas E., McKyes E.: Compaction effects on the hydraulic conductivity of a clay soil. Soil Sci., 125, 278-282, 1978.
  • 62.Dunn G.H., Phillips R.E.: Equivalent diameter of simulated macro pore systems during saturated fiow. Soil Sci. Soc. Am. J„ 55, 1244-1248, 1991.
  • 63.Eadie W..T, Drijard D., James F.,E., Roos M., Sadoulet B: Metody statystyczne w fizyce doświadczalnej. PWN. Warszawa, 63-64, 1989
  • 64.Edwards W.M., Shipitalo M.J., Owens L.B.: Gas water and solute in soils containing macro- pores: a review of methodology, Geoderma, 57, 31-49, 1993.
  • 65.Klrick D.E., Kachanowski R.G., Pringle E.A., Ward A.L.: Parameter estimates of field solute transport models based on time domain reflectometry measurements. Soil Sci. Soc. Am. J., 56, 1663-1666, 1992.
  • 66.Encyklopedia fizyki. Praca zbiorowa. PWN, Warszawa, t,2, 12-13, 1973.
  • 67.Englund E., Sparks A.: Geostatistical Environmental Assessment Software. Environmental Monitoring Systems Laboratory Office of Research and Development, U.S. Environmental Protection Agency, Las Vegas, NV 89193-3478, 1988.
  • 68.Fellner-Feldegg H.: The measurement of dielectrics in Time Domain. The Journal of Physical Chemistry, 73, 616-623, 1969.
  • 69.Friedman S.P.: Statistical mixing model for the apparent dielectric constant of unsaturated porous media. Soil Sci. Soc. Am. J., 61, 742-745, 1997.
  • 70.Friedman S.P., Zhang L., Seaton N.A.: Gas and solute diffusion coefficients in pore networks and its description by a simple capillary model. Transport in Porous Media, 19, 281-301, 1995.
  • 71.Germann P.F., DiPietro L.: When is porous-media flow preferential? A hydromechanical perspective. Geoderma, 74, 1-21,1996.
  • 72.Genuchten van, M.T.: A closed-form equation predicting ihe hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 892-898, 1980.
  • 73.Gliński J., Stępniewski W., Łabuda S.: Pobieranie tlenu i wydzielanie dwutlenku węgla w środowisku glebowym. Problemy Agrofizyki 39, Zakład Narodowy im. Osslińskich, Wroclaw, 1 - 70, 1983.
  • 74.Gliński J., Stępniewski W,: Soil aeration and its role for plants. CRC. Press, Inc., 1985
  • 75.Góźdź A.: Modelowanie w fizyce. (Konstankiewicz K,, Usowicz B. (red): „Fizyka z elementami agrofizyki"). Materiały IX Szkoły p.t. Agrofizyczne metody badań, ich znaczenie i upowszechnianie. Lublin, 23-29, 1997.
  • 76.Gupta S.C., Hanks R.J.: Influence of water content in electrical conductivity of the soils. Soi) Sci. Soc, Am. Proc., 36, 855-857, 1972.
  • 77.Haman J,, Szot B., Woźniak W.: Zagadnienia wymiany ciepła i masy w materiałach roślinnych. Problemy Agrofizyki 9, Zakład Narodowy im. Osslińskich, Wroclaw, 1-41, 1973.
  • 78.Haverkamp JR., Parlange J.Y.: Predicting the water-retention curve from partile-size distribution: sandy soils without organic matter. Soil Sci., 142, 325-339, 1986.
  • 79.Heimovaara T.J.: Frequency domein analysis of time domain reflectometry waveforms, 1. Measurement of the complex dielectric permittivity of soil. Water Resour. Res., 30, 189-199, 1994.
  • 80.Heimovaara T.J.: Frequency domein analysis of lime domain reflectomelry waveforms, 1. A four-component complex dielectric mixing model for soils. Water Resour. Res., 30, 201-209, 1994.
  • 81.Hopmans J.W., Dane J.H.: Thermal conductivity of two porous media as a function of water content, temperature and density. Soil Sci., 142 (4), 187-195, 1986.
  • 82.Hopmans J.W., Dane J.H.: Temperature dependence of soil hydraulic properties. Soil Sci. Soc. Am J., 50, 4-9, 1986.
  • 83.Horgan G.W., Ball B.C.: Simulating diffusion in a Boolean model of soil pores. European J. Soil Sci., 45, 483-491, 1994.
  • 84.Horowitz J., Hillel D.: A theoretical approach to the areal distribution of soil surface conductivity. Soil Sci., 143, 231-240, 1987.
  • 85.Jabro J.D.: Variability of field-sat u rated hydraulic conductivity in a Hagerstown soil as affected by initial water content. Soil Sci,, 161, 735-739, 1996.
  • 86.Jay a war dane N.S.: Prediction of unsaturated hydraulic conductivity changes of a loamy soil in different salt solutions using the equivalent salt solution concept. Aust. J. Soil Res., 30, 565-571, 1992.
  • 87.Kablan R.A.T., Mansell R.S., Bloom S.A., Hammond L,C.: Determinations of unsaturated hydraulic conductivity for Candler sand. Soil Sci., 148, 155-164, 1989.
  • 88.Kachanoski R.G., Pringle E.A., Ward A.L.: Field measurement of solute travel times using time domain reflectometry. Soil Sci. Soc. Am J., 56, 47-52, 1992.
  • 89.Kachanoski R.G., Thony J.L., Vaudin M., Vachaud G., Laty R.: Measurement of solute transport during constant infiltration from a point source. Soil Sci. Soc. Am 1, 58, 304-309, 1994.
  • 90.Kersten M.S.: Thermal properties of soils. University of Minnesota, Inst. Technology, Eng. Exp. Stat. Bull, No. 28, 1949.
  • 91.Kędziora A.: Podstawy agrometeorologii. PWRiL. Poznań, 1995.
  • 92.Kimball B.A. , Jackson R.D., Reginato R.J., Nakayama F.S., Idso S.B: Comparison of field- measured and ealculatcd soil-heat fluxes. Soil Sci. Soc, Am. J,, 40, 18-25, 1976.
  • 93.Kimball B.A., Jackson R.D., Nakayama F.S., idso S.B., Reginato R.J.: Soil-heat llux determination: Temperature gradient method with computed thermal conductivities. Soil Sci. Soc. Am. J., 40, 25-28, 1976.
  • 94.Kirby J.M, Smiles D.E.; Hydraulic conductivity of aqueous bentonite suspensions Aust, J. Soil Res., 26, 561-574, 1988.
  • 95.Kohnke H., Nakshabandi A.G.: Heat transfer in soils. 8-th Intern. Congress of Soil Science, Bucharest, 183-193, 1964.
  • 96.Konstankiewicz K., Pukus A., Walczak R.: Domenowa teoria histerezy dla termodynamicznych procesów w glebie. Problemy Agrofizyki 13, Zakład Narodowy im. Osslińskich, Wrocław, 1974.
  • 97.Kossowski J,: Thermal properties of soil in Felin. Report MR II.08.02.8, Institute of Agrophys- ics, Polish Academy of Sciences, Lublin 1977.
  • 98.Kowalik P.: Analiza wpływu melioracji wodnych na natlenienie gleb. Zesz. Nauk P, Gdańsk. Bud. Wodne XV, 3, 164, 1971.
  • 99.Kowalik P., Miler A.: Teoria ruchu wody glebowej. Archiwum Hydrotechniki, 25, 619-637. 1979.
  • 100.Kowalik P., Stępniewski W.: The significance of soil aeration for plants. Zesz, Probl. Post. Nauk Rol., 220, 60,1979.
  • 101.Laroussi CH., Touzi T., de Backer L.W.: Hydraulic conduclivity of saturated porous media in relation to their geometrical characteristics. Soil Sci., 132, 387-393, 1981.
  • 102.Ledieu J., De Ridder P., De Clerck P., Dautrebanede S.: A method of measuring soil moisture by time-domain reflectometry. J. Hydrol., 88, 319-328, 1986.
  • 103.Libuś W., Libuś Z.: Elektrochemia. PWN, Warszawa, 1975.
  • 104.Lipiec J.: Możliwości oceny przewodnictwa wodnego gleb na podstawie ich niektórych właściwości. Problemy Agrofizyki 40, Zakład Narodowy im. Osslińskich, Wrocław, 1-72, 1983,
  • 105.Lipiec J., Hatano R., Słowińska-Jurkiewicz A.: The fractal dimension of pore distribution patterns in variously-compacted soil. Soil Tillage Res., 47, 61-66, 1998,
  • 106.Loon W.K. van, Perfect P.E., Groenevelt P.H,, Kay B.D.: Application of dispersion theory to lime domain reflectometry in soils. Transport in Porous Media. 6, 391-406, 1991.
  • 107.Madankumar N.: Prediction of soil moisture characteristics from mechanical analysis and bulk density data. Agric. Waler Manage., 10, 305-312, 1985.
  • 108.Majercak J., Novak V.: Simulation of the soil-water dynamics in the root zone during the vegetation period. I. Simulation model. Vodohosp. Cas., 40, 299-315, 1992.
  • 109.Malicki M.A.: Przegląd metod pomiaru wilgotności gleb i ocena ich przydatności w badaniach polowych. Problemy Agrofizyki 31, Zakład Narodowy im. Osslińskich, Wrocław, 1980
  • 110.Malicki M.A., Skierucha W.M.: A manually controlled TDR soil moisture meter operating with 300 ps rise-time needle pulse. Irrigation Science. 10:153-163, 1989.
  • 111.Malicki M.: A reflectometric (TDR) meter of moisture content in soils and other capillary- porous materials. Zesz. Probl. Post. Nauk Roln., 388, 107-114, 1990.
  • 112.Malicki M.A., Plagge R., Renger M., Walczak R.T.: Application of time-domain reflectometry (TDR) soil moisture minprobe for the determination of unsaturated soil water characteristics from undisturbed soil cores. Irrig. Sci., 13, 65-72, 1992.
  • 113.Malicki M.A.: Wpływ fizycznych właściwości gleby na elektryczne parametry układu elektrody|gleba w aspekcie pomiaru jej wilgotności i zasolenia. Rozprawa habilitacyjna, Acta Agrophysica, Instytut Agrofizyki PAN, Lublin, 1-107, 1993.
  • 114.Malicki M.A., Walczak R.T., Koch S., Fluhler H.: Determining soil salinity from simultaneous readings of its electrical conductivity using TDR. Special Publication SP 19-94. Symposium and Workshop on TDR in Environmental, Infrastructure, and Mining Applications. Northwestern University, Evanston, USA, 328-336, 1994.
  • 115. Malicki M.A., Plagge R., Roth C.H.: Influence of matrix on TDR soil moisture readings and its elimination. Special Publication SP 19-94. Symposium and Workshop on TDR in Environmental, Infrastructure, and Mining Applications. Northwestern University, Evanston, USA, 105-114, 1994.
  • 116. Malicki M.A., Plagge R., Roth C.H.: Improving the calibration of dielectric TDR soil moisture determination taking into account the solid soil. European J. Soil Sci., 47, 357-366, 1996.
  • 117. Malicki M.A., Walczak R.T: Evaluating soil salinity status from bulk electrical coondutivity and permittivity. European J. Soil Sci, 50, 505-514, 1999.
  • 118. Marshall T.J.: A relation between permeability and size distribution of pores. J. Soil Sci,, 9, 1-8, 1958.
  • 119. Marshall T.J.: The diffusion of gases through porous media. J. Soil Sci., 10, 79-82, 1959.
  • 120. Marshall T.J, Holmes J.W.: Soil physics, Cambridge University Press. Cambridge, 1979.
  • 121. Massalski JLM., Studnicki J.: Legalne jednostki miar i stale fizyczne. PWN, Warszawa, 1988.
  • 122. Mehta B.K., Shiozawa S., Nakano M,: Hydraulic properties of a sandy soil at low water contents. Soil Sci., 157, 208-214, 1994,
  • 123. Moldrup P., Hansen J.A., Rolston D.E., Yamaguchi T.: Improved simulation of unsaturated soil hydraulic conductivity by the moving mean slope approach. Soil Sci., 155, 8-14, 1993,
  • 124. Michiels P., Hartman R., de Strooper E.: Comparisons of the unsaturated hydraulic conductivity of a coarcs-textured soil as determined in the field, in the laboratory, and with mathematical models. Soil Sci., 147, 299-304, 1989.
  • 125. Milly P.C.D.: Advances in modeling of water in the unsaturated zone. Transport in Porous Media, 3,491-514, 1988,
  • 126. Mikosz A.I.; Wpływ zabiegów uprawowych oraz warunków pogodowych na strukturę i właściwości fizyczne gleby płowej wytworzonej z utworu pyłowego. Praca doktorska, AR, Lublin, 1-247, 1998.
  • 127. Mohrath D., Bruekler L., Bertuzzi P., Gaudu J.C., B our let M.: Error analysis of evaporation method for determining hydrodynamic properties in unsaturated soil. Soil Sci. Soc. Am. J, 61,725-735, 1997.
  • 128. Mualem Y., Dagan G.; Hydraulic conductivity of soils: Unified approach to the statisticla models. Soil Sci. Soc. Am. J. 42, 392-395, 1978.
  • 129. Mualem Y.: A modified dependent-domain theory of hysteresis. Soil Sci., 137, 283-291. 1984.
  • 130. Mualem Y.: Prediction of the soil boundary wetting curve. Soil Sci., 137, 379-390.1984,
  • 131. Murphy B.W., Koen T.B., Jones B.S., Huxedurp L.M.: Temporal variation of hydraulic properties for some soils with fragile structure. Aust. J. Soil Res., 31, 179-197, 1993.
  • 132. Nadler A., Frenkel H.; Determination of soil solution electrical conductivity from bulk soil electrical conductivity measurements by the four-electrode method. Soil. Sci. Soc. Am. J., 44, 1216-1221, 1980.
  • 133.Nadler A,: Field application of the lour-electrode technique for determining soil solution conductivity. Soil Sci. Soc. Am. J., 45, 30-34, 1981.
  • 134.Nakano M.: Pore volume distribution and curve of water content versus suction of porous body: 1. Two boundary drying curves. Soil Sci., 122, 5-14, 1976.
  • 135.Nakano M.: Pore volume distribution and curve of water content versus suction of porous body: 2. The boundary wetting curves. Soil Sci., 122, 100-106, 1976.
  • 136.Nakano M,, Miyazaki T.: The diffusion and nonetuiIibrium thermodynamic equations of water vapor in soils in soils under temperature gradients. Soil Sci., 128, 184-188, 1979.
  • 137.Nakano M., Amemiya Y., Fujii K.: Saturated and unsaturated hydraulic conductivity of swelling clays. Soil Sci., 141, 3-6, 1986.
  • 138.Nitao J.J., fitar J.: Potentials and their role in transport in porous medium. Water Resour. Res., 32, 225-250, 1996.
  • 139.Nkalai D., Zarlman K.E.: A comparison of the unsaturated hydraulic conductivities of calcareous and noncalcareous soils. Soil Sci., 140, 179-183, 1985.
  • 140.Noborio K.j Mtlnnes K.J.: Thermal conductivity of' salt-affected soils. Soil Sci. Soc. Am. J., 57, 329-334, 1993.
  • 141.Noborio K., McInnes K.J., Heilman J.L.: Two-dimensional model for water, heat, and solute transport in furrow-irrigated soil: I. Theory, II Field evaluation. Soil Sci. Soc. Am. J., 60, 1001-1021, 1996.
  • 142.Novak V,: Hysteresis of flux-gradient relations for saturated flow of water through clay materials. J. Soil. Sci., 23, 248-253, 1972.
  • 143.Novak V,, Majercak J.: Simulation of the soil-water dynamics in the root zone during the vegetation period. II. The coursc of state variables of soil water below the maize canopy. Vo- dohosp. Cas., 40, 3809-397, 1992.
  • 144.Olejnik J.: Modelowe badania struktury bilansu cieplnego i wodnego zlewni w obecnych i przyszłych warunkach klimatycznych. Roczniki Akademii Rolniczej w Poznaniu Rozprawy Naukowe. Zeszyt 268, s.125, 1996.
  • 145.Olsson K.A., Rose C.W.: Hydraulic properties of red-brown earth determined from in situ measurements. Aust. J. Soil Res., 16, 169-180, 1978.
  • 146.Pachepsky Ya, A., Timlin D., Varallyay G.: Artificial neural networks to estimate soil water retention from easily measurable data. Soil Sci. Soc. Am J., 60, 727-733, 1996.
  • 147.Paydar Z., Cresswell H.P.: Water retention in Australian soils. II. Prediction using particle size, bulk density, and other properties. Aust. J. Soil Res., 34, 679-693, 1996.
  • 148.Phogat V.K., Aylmore L.A.G.: Computation of hydraulic conductivity of porous materials using computer-assisted tomography. Aust. J. Soil Res,, 34, 671-678, 1996.
  • 149.Plakk T.P.: Correlation between availability of moisture to plants and dielectric constant of soil. Pochvovedeniye, 8, 40-46, 1989.
  • 150.Płochocki Z.: Słownik fizyczny. Wiedza Powszechna, Warszawa, 235, 1984.
  • 151.Poulovassilis A., Polyuronides M., Kerkides P.: Evaluation of various computational schemes in calculating unsaturated hydraulic conductivity. Agric. Water Manage., 13, 317-327, 1988.
  • 152.Pukos A.: Odkształcenia gleby w zależności od rozkładów wielkości porów i cząstek fazy stałej. Problemy Agrofizyki 61, Zakład Narodowy im. Osslińskich, Wrocław, 1-108, 1990.
  • 153.Ragab R., Feyen J., Hillel D.: Comparative study of numerical and laboratory methods from determining the hydraulic conductivity function of a sand. Soil Sci,, 131, 375-388,. 1981.
  • 154.Ragab R., Feyen J., Hillel D.: Effect of the method for determining pore size distribution on prediction of the hydralulic conductivity function and of infiltration. Soil Sci., 134, 141-145, 1982.
  • 155.Rajkai K., Kabos S., van Genuchten M.Th., Jansson Per-Erik: Estimation of water- retention characteristics from the bulk density and particle-size distribution of Swedish soils. Soil Sci., 161,832-845, 1996.
  • 156.Rab Md.A., Willatt S.T., Olsson K.A.: Hydraulic properties of duplex soil determined from in situ measurements. Aust. J. Soil Res., 25, 1-7, 1987.
  • 157.Reif F: Fizyka statystyczna. PWN, Warszawa, 75-119, 1973.
  • 158.Reynolds W.D., Elrick D.E.: In situ measurements ot field-saturated hydraulic conductivity, sorptivity, and the a-parameter using the Guelph permeameter. Soil Sci., 140, 292-302, 1985.
  • 159.Rhoades J.D., Rants P.A., Prater R.J.: Effects of liquid-phase electrical conductivity, water content and surface conductivity on bulk soil electrical conductivity. Soil Sci. Soc. Am, J., 40, 651-655, 1976.
  • 160.Rhoades J.D., Nahid A., Manteghi N.A., Shouse P.J., Alves W.J.: EslimaLing soil salinity from saturated .soil-paste electrical conductivity. Soil Sci. Soc. Am. J., 53, 42K-433, J989.
  • 161.Rhoades J.D., Manteghi N.A., Shouse P. J., Alves W.J.: Soil electrical conductivity and soil salinity: new formulations and calibrations. Soil Sci. Soc. Am. J., 53, 433-439, 1989.
  • 162.Richards L.A.: Capillary conductivity of liquids through porous mediums. Physics, 1, 318- 333, 1931.
  • 163.Rieu M., Sposito G.: Fractal fragmentation, soil porosity, and soil water properties: 1. Theory; II. Applications. Soil Sci. Soc. Am. J., 55, 1231-1244, 1991.
  • 164.Risler P.D., Wraith J.M., Gaber H.M.: Solute transport under transient conditions estimated using time domain reflectometry. Soil Sci. Soc. Am. J., 60, 1297-1305, 1996.
  • 165.Rose D.A.: Soil water: Quantities, units and symbols. J. Soil Sci. 30, 1-15, 1979.
  • 166.Rosslerova R.; A Prediction of retention curve from the particle-size distribution curve. Vo- dohosp, Cas, 40, 182-196, 1992.
  • 167.Rosslerova R.: Percolation theory - application for determination of retention curves of soil moisture content. 1. Model; 2. Description of homogeneous and heterogeneous porous system, Vodohosp. Cas, 40, 425-445, 1992.
  • 168.Roth C.H., Malicki M.A., Plagge R.: Empirical evaluation of the relationship between soil diclcctric constant and volumetric water content as the basis for calibrating soil moisture measurements by TDR. J. Soil Sci., 43, 1-13, 1992.
  • 169.Roth K., Schulin K., Fluhler H., Attinger W.: Calibration of Time Domain Relleciometry for water content measurement using a composite dielectric approach. Water Resour. Res., 26, 2267-2273, 1990.
  • 170.Setiawan B.I., Nakano M.: On the determination of unsaturated hydraulic conductivity from soil moisture profiles and from water retention curves. Soil Sci,, 156, 389-395, 1993.
  • 171.Seyfried M.S., Murdock M.D.: Calibration of time domain reflectometry for measurement of liquid water in frozen soils. Soil Sci., 161, 87-98, 1996.
  • 172.Shao M., Horton R.: Soil water diffusivity determination by general similarity theory. Soil Sci., 161,727-734, 1996,
  • 173.Sikora E.: Zależność właściwości cieplnych zagregowanych próbek glebowych od wielkości agregatów i uwilgotnienia. Praca doktorska. AR Lublin, 1983.
  • 174.Skierucha W.; Zależność propagacji impulsu elektromagnetycznego w glebie od jej wybranych właściwości. Praca doktorska. Instytut Agrofizyki, PAN, 1996.
  • 175.Slowińska-Jurkiewicz A.: Przepuszczalności powietrzna w leśnych i uprawowych glebach lessowych Zesz. Prob. Post. Nauk Rol.., 315, 189-204, 1986.
  • 176.Slowińska-Jurkiewicz A.: Struktura i właściwości wodno-powietrzne gleb wytworzonch z lessu Rocz. Nauk Rol., Seria D, 218, 1-76, 1989.
  • 177.Snyder V.A.: Statistical hydraulic conductivity models and scaling of capillary phenomena in porous media. Soil Sci. Soc. Am. J., 60, 771-774, 1996.
  • 178.Sobczuk H.A.: Opis stanu fizycznego gleby jako ośrodka nieuporządkowanego na przykładzie krzywych retencji wody. Rozprawa habilitacyjna, Acta Agrophysica 11, Instytut Agrofizyki PAN, Lublin, 1-100, 1998.
  • 179.Sokołowska Z., Sokołowski S.: Zastosowanie teorii fraktalnych do opisu procesu adsorpcji. Problemy Agrofizyki 42, Zakład Narodowy im. Osslińskich, Wrocław, 1-55, 1988.
  • 180.Sokołowska Z.: Rola niejednorodności powierzchni w procesach adsorpcji zachodzących na glebach. Problemy Agrofizyki 58, Zakład Narodowy im. Osslińskich, Wrocław, 1-165, 1989.
  • 181.Staniszewski B.: Wymiana ciepła. PWN, Warszawa, 1979.
  • 182.Stephens D.B., Rehfeldt K.R.: Evaluation of closed-form analytical models to calculate conductivity in fine sand. Soil Sci. Soc. Am. J., 49, 12-19, 1985.
  • 183.Steru M.: Le contrôle électrique de l'humidité des matériaux. Measures & Contrôle Industriel. 24, 33-38, 1959.
  • 184.Stępniewski W., Gliński J,: Procesy transportu gazów w glebie i skład powietrza glebowego. Problemy Agrofizyki 42, Zakład Narodowy im. Osslińskich, Wrocław, 1-112, 1984.
  • 185.Stępniewska Z„ Gliński J., Włodarczyk T., Brzeziński M., Blum W.E.H., Rampazzo N., Wimmer B.: Soil alternation status of some Austrian soils. International Agrophysics, 11, 199- 206, 1997.
  • 186.Stulina G.V.: Utilization of the hydrophysical characteristics of soils to evaluate the possibility of using intrasoil irrigation. Pochvovedeniye, 3, 152-156, 1992.
  • 187.Swartzendruber A.: Modification of Darcy's law for flow of water in soils. Soil Sci., 93, 22- 29, 1961.
  • 188.Szatylowicz J., Brandyk T,, He we Ike O., Gnatowski T,: Description of the shrinkage characteristics in alluvial clay soils. Zesz. Prob. Post. Nauk Rol., 436, 149-156, 1996.
  • 189.Tinga W.R., Voss W.A.G., Blossey D.F.: Generalized approach to multiphase dielectric mixture theory. J. Applied Physics, 44, 3897-3902, 1973.
  • 190.Topp G.C., Davis J.L, Annan A.P.: Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resour. Res., 16, 574-582. 1980.
  • 191.Turski R., Domżal H., Słowińska-Jurkiewicz A.: Przepuszczalność powietrzna jako wskaźnik stanu fizycznego gleby. Rocz. Gleboznawcze, 29, 1-25, 1978.
  • 192.Turski R,, Hetman J., Słowińska-Jurkiewicz A.: Podłoża stosowane w ogrodnictwie szklarniowym. Rocz. Nauk Rol., 180, Seria D, 1-88, 1980.
  • 193.Usowicz B.: Modelowe badania wpływu wilgotności gleby na kształtowanie się temperatury w profilu glebowym. Praca doktorska. AR Lublin, 1991.
  • 194.Usowicz B.: Statistical-physical model of thermal conductivity in soil. Polish J. Soil Sci. 25(1), 25-34, 1992.
  • 195.Usowicz B.: Soil Thermal Properties Software Package. Copyright Institute of Agrophysics PAS, Lublin, 1992.
  • 196.Usowicz B.: Thermal properties of some soils from Lower Austria, Central Bohemia and Lublin Upland. Int. Agrophysics, 7, 183-191, 1993.
  • 197.Usowicz B.: Evaluation of methods for soil thermal conductivity calculations. Int. Agrophysics, 9(2), 109-113, 1995.
  • 198.Usowicz B., Moreno F., Andreu L., Fernandez J.E.: Spatial distribution of topsoil thermal properties in field without crops. Zesz. Probl. Post. Nauk Roln., 419, 109-117, 1995.
  • 199.Usowicz B.: Cieplne właściwości wybranych podłoży ogrodniczych. Zesz, Prob. Post. Nauk Rol., 429, 305-313, 1996.
  • 200.Usowicz W., Kossowski J.: Distribution of soil water content in cultivated fields based on measurement by gravimetric and reflectometric methods. Zesz. Prob. Post. Nauk Rol., 436, 157-165, 1996.
  • 201.Usowicz B., Kossowski ,T., Baranowski P.: Spatial variability of soil thermal properties in cultivated fields. Soil and Tillage Research, 39, 85-100, 1996.
  • 202.Usowicz B.: Soil thermal properties software package 2.0. Copyright Institute of Agrophysics PAS, Lublin, 1998.
  • 203.Usowicz B.: Time and space variability of soil thermal properties in cultivated fields. Proc. 16 th World Congress of Soil Science, Montpellier, France, CD 253-t.pdf, 1-9, 1998.
  • 204.US Salinity Laboratory, (ed. Richards, L.A.): Diagnosis and Improvement of Saline and Alkali Soils. US Dept. of Agriculture Handbook No. 60, 1954.
  • 205.Vereecken H,, Maes J., Feyen J.: Estimating unsaturated hydraulic conductivity from easily measured soil properties. Soil Sci., 149, 1-12, 1990.
  • 206.von Hippel A. R.: Dielektryki i fale. PWN. Warszawa. 1963,
  • 207.Voronin A.D.: Soil physics: Progress and problems. Pochvovedeniye, 10, 34-43, 1987.
  • 208.Walczak R.: Modelowe badania zależności retencji wodnej od parametrów fazy stałej gleby. Problemy Agrofizyki 41, Zakład Narodowy im. Osslińskich, Wrocław, 1-69, 1984.
  • 209.Walczak, R.: Basic problems of mass and energy transfer in the soil-pl ant-atmosphere system, Zesz, Prob. Post. Nauk Rol. 346: 11-22, 1987.
  • 210.Walczak R., Usowicz B.: Variability of moisture, temperature and thermal properties in bare soil and in crop field. Int. Agrophysics, 8, 161-169, 1994.
  • 211 Walczak R.T., Stawiński C., Sobczuk H.A., Gliński J.: ACCESS. Agroclimatic Change in European Soil Suitability. Chapter 5, Modelling soil crack development. 82-96, 1996.
  • 212. Walczak R.T., Sławiński C., Sobczuk H.A., Gliński J.: ACCESS. Agroclimatic Change in European Soil Suitability. Chapter 9D. Infiltration with by-pass flow effect in cracking soils. 148-163, 1996.
  • 213. Walczak R.T., Sławiński C., Sobczuk H.A., Gliński J.: ACCESS. Agroclimatic Change in European Soil Suitability. Chapter 13. Validation of infiltration with by-pass How effect in cracking soils. 205-221, 1996.
  • 214. Wang J.R., Schmugge T.J.: An empirical model for the complex dielectric constant of soils as a function of water content. IEEE Trans. Geosci. Remote Sensing, GE-18:288-295. 1980.
  • 215. Wessolek G., Plagge R,, Leij F.J., van Genuchten M.Th.: Analysing problems in describing field and laboratory measured soil hydraulic properties, Geoderma, 62, 93-110, 1994,
  • 216. Whalley W.R.: Considerations on the use of time-domain refleclometry (TDR) for measuring soil water content. J. Soil Sei., 44, 1-9, 1993.
  • 217. Whitaker S.: Flow in porous medium. I: A theoretical derivation of Darcy's low. Transport in Porous Media, 1,3-25, 1986.
  • 218. Whitaker S.: Flow in porous medium. II: The governing equations for immiscible, two-phase flow. Transport in Porous Media, 1, 105-125, 1986.
  • 219. Whitaker S.: Flow in porous medium. III: Deformablc media. Transport in Porous Media, 1, ¡27-154, 1986,
  • 220. White L, Zegelin S.J., Topp G.C., Fish A.: Effect of bulk electrical conductivity on TDR measurement of water content in porous media. Special Publication SP 19-94. Symposium and Workshop on TDR in Environmental, Infrastructure, and Mining Applications. Northwestern University, Evanston, USA, 1994.
  • 221. Witkowska-Walczak B.: Hydrophysical characteristics of rendzina soil with aggregate structure., Zesz. Prob. Post. Nauk Rol., 436, 167-174, 1996
  • 222.Witkowska-Waltzak B.: Hydrophysical characteristics of Podzol, Cambisol and Luvisol Aggregates. Part. I. Waterstability of aggregates, Polish J, Soil Sci., XXX/1 , 21-29, 1997.
  • 223.Wołoszyn Z.: Słownik fizyczny. Wiedza Powszechna, Warszawa, 158, 1984.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-6ac54d1c-99d1-4929-bb88-d7b2c6aa53cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.