PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | 47 | 4 |

Tytuł artykułu

Generation of OH initiated by interaction of Fe2plus and Cuplus with dioxygen; comparison with the Fenton chemistry

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Iron and copper toxicity has been presumed to involve the formation of hydroxyl radical (.OH) from H2O2 in the Fenton reaction. The aim of this study was to verify that Fe2+-O2 and Cu+-O2 chemistry is capable of generating .OH in the quasi physiological environment of Krebs-Henseleit buffer (KH), and to compare the ability of the Fe2+-O2 system and of the Fenton system (Fe2+ + H2O2) to produce .OH. The addition of Fe2+ and Cu+ (0-20 µM) to KH resulted in a concentration-dependent increase in .OH formation, as measured by the salicylate method. While Fe3+ and Cu2+ (0-20 µM) did not result in .OH formation, these ions mediated significant .OH production in the presence of a number of reducing agents. The .OH yield from the reaction mediated by Fe2+ was increased by exogenous Fe3+ and Cu2+ and was prevented by the deoxygenation of the buffer and reduced by superoxide dismutase, catalase, and desferrioxamine. Addition of 1 µM, 5 µM or 10 µM Fe2+ to a range of H2O2 concentrations (the Fenton system) resulted in a H2O2-concentration-dependent rise in .OH formation. For each Fe2+ concentration tested, the .OH yield doubled when the ratio [H2O2]:[Fe2+] was raised from zero to one. In conclusion: (i) Fe2+-O2 and Cu+-O2 chemistry is capable of promoting .OH generation in the environment of oxygenated KH, in the absence of pre-existing superoxide and/or H2O2, and possibly through a mechanism initiated by the metal autoxidation; (ii) The process is enhanced by contaminating Fe3+ and Cu2+; (iii) In the presence of reducing agents also Fe3+ and Cu2+ promote the .OH formation; (iv) Depending on the actual [H2O2]:[Fe2+] ratio, the efficiency of the Fe2+-O2 chemistry to generate .OH is greater than or, at best, equal to that of the Fe2+-driven Fenton reaction.

Wydawca

-

Rocznik

Tom

47

Numer

4

Opis fizyczny

p.951-962,fig.,ref.

Twórcy

  • Medical Centre of Postgraduate Education, Marymoncka 99, 01-813 Warsaw, Poland

Bibliografia

  • 1. Halliwell, B. & Gutteridge, J.M.C. (1990) Role of free radicals and catalytic metal ions in hu­man disease: An overview. Methods Enzymol. 186, 1-85.
  • 2. Keyer, K. & Imlay, J.A. (1996) Superoxide ac­celerates DNA damage by elevating free-iron levels. Proc. Natl. Acad. Sci. U.S.A. 93, 13635-13640.
  • 3. Yue Qian, S. & Buettner, G.R. (1999) Iron and dioxygen chemistry is an important route to initiation of biologic free radical oxidations: An electron paramagnetic resonance spin trapping study. Free Radical Biol. Med. 26, 1447-1456.
  • 4. Rush, J.D. & Koppenol, W.H. (1986) Oxidizing intermediates in the reaction of ferrous EDTA with hydrogen peroxide. J. Biol. Chem. 261, 6730-6733.
  • 5. Wink, D.A., Nims, R.W., Saavedra, J.E., Utermahlen, W.E., Jr. & Ford, P.C. (1994) The Fenton oxidation mechanism: Reactivities of biologically relevant substrates with two oxi­dizing intermediates differ from those predieted for the hydroxyl radical. Proc. Natl. Acad. Sci. U.S.A. 91, 6604-6608.
  • 6. Miller, D.M., Buettner, G.R. & Aust, S.D. (1990) Transition metals as catalysts of "autoxidation" reactions. Free Radical Biol. Med. 8, 95-108.
  • 7. Kosaka, H. & Shiga, T. (1993) Spin trapping study of superoxide production in ferrous ion oxidation. Free Radical Res. Commun. 19, S63-S69.
  • 8. Biaglow, J.E. & Kachur, A.V. (1997) The gen­eration of hydroxyl radicals in the reaction of molecular oxygen with polyphosphate com­plexes of ferrous ions. Radiat. Res. 148, 181-187.
  • 9. Kachur, A.V., Tuttle, S.W. & Biaglow, J.E. (1998) Autoxidation of ferrous ion complexes: A method for the generation of hydroxyl radi­cals. Radiat. Res. 150, 475-482.
  • 10. Floyd, R.A., Watson, J.J. & Wong, P.K. (1984) Sensitive assay of hydroxyl radical formation utilizing high pressure liquid chromatography with electrochemical detection of phenol and salicylate hydroxylation products. J. Biochem. Biophys. Methods 10, 221-235.
  • 11. Obata, T. & Yamanaka, Y. (1996) Effect of iron (II) on the generation of hydroxyl free radicals in rat myocardium. Biochem. Pharmacol. 51, 1411-1413.
  • 12. Hunt, J.V., Dean, R.T. & Wolff, S.P. (1988) Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and age­ing. Biochem. J. 256, 205-212.
  • 13. Kaur, H., Whiteman, M. & Halliwell, B. (1997) Peroxynitrite-dependent aromatic hydroxy- lation and nitration of salicylate and phenyl- alanine. Is hydroxyl radical involved? Free Radical Res. 26, 71-82.
  • 14. Gower, J., Healing, G. & Green, C. (1989) Mea­surement by HPLC of desfer- rioxamine-available iron in rabbit kidneys to assess the effect of ischemia on the distribu­tion of iron within the total pool. Free Radical Res. Commun. 5, 291-299.
  • 15. Voogd, A., Sluiter, W., Vaneijk, H.G. & Koster, J.F. (1992) Low molecular weight iron and the oxygen paradox in isolated rat hearts. J. Clin. Invest. 90, 2050-2055.
  • 16. Chevion, M., Jiang, Y.D., Harel, R., Beren- shtein, E., Uretzky, G. & Kitrossky, N. (1993) Copper and iron are mobilized following myo- cardial ischemia — possible predictive criteria for tissue injury. Proc. Natl. Acad. Sci. U.S.A. 90, 1102-1106.
  • 17. Coudray, C., Pucheu, S., Boucher, F., Arnaud, J., Deleiris, J. & Favier, A. (1994) Effect of ischemia/reperfusion sequence on cytosolic iron status and its release in the coronary ef­fluent in isolated rat heart. Biol. Trace Element Res. 41, 69-75.
  • 18. M^czewski, M. & Ber^sewicz, A. (2000) The role of endothelin, protein kinase C, and free radicals in the mechanism of the post-ischemic endothelial dysfunction in guinea-pig hearts. J. Mol. Cell. Cardiol. 32, 297-310.
  • 19. Minotti, G. & Aust, S.D. (1992) Redox cycling of iron and lipid peroxidation. Lipids 27, 219-225.
  • 20. Maestre, P., Lambs, L., Thouvenot, J.P. & Berthon, G. (1994) Copper-ligand interactions and physiological free radical processes. 2. In­fluence of Cu2+ ions on Cu+-driven OH genera­tion and comparison with their effects on Fe2+-driven .OH production. Free Radical Res. 20, 205-218.
  • 21. Halliwell, B. (1985) Use of desferrioxamine as a 'probe' for iron-dependent formation of hydroxyl radicals. Evidence for a direct reac­tion between desferal and the superoxide radi­cal. Biochem. Pharmacol. 34, 229-233.
  • 22. Sutton, H.C. & Winterbourn, C.C. (1989) On the participation of higher oxidation states of iron and copper in Fenton reactions. Free Radical Biol. Med. 6, 53-60.
  • 23. Nayni, N.R., White, B.C., Aust, S.D., Huang, R.R., Indrieri, R.J., Evans, A.T., Bialek, H., Jacobs, W.A. & Komara, J. (1985) Post resus­citation iron delocalization and malondial- dehyde production in the brain following pro­longed cardiac arrest. Free Radical Biol. Med. 1, 111-116.
  • 24. Bolli, R. (1991) Oxygen-derived free radicals and myocardial reperfusion injury. Cardio- vasc. Drugs Ther. 5, 249-268.
  • 25. Bauza, G., Lemoyec, L. & Eugene, M. (1995) pH regulation during ischaemia-reperfusion of isolated rat hearts, and metabolic effects of 2,3-butanedione monoxime. J. Mol. Cell. Cardiol. 27, 1703-1713.
  • 26. Harris, D.C. & Aisen, P. (1973) Facilitation of Fe(II) autoxidation by Fe(III) complexing agents. Biochim. Biophys. Acta 329,156-158.
  • 27. Welch, G.N. & Loscalzo, J. (1998) Homo­cysteine and atherothrombosis. N. Engl. J. Med. 338, 1042-1050.
  • 28. Nappi, A.J. & Vass, E. (1997) Comparative studies of enhanced iron-mediated production of hydroxyl radical by glutathione, cysteine, ascorbic acid, and selected catechols. Biochim. Biophys. Acta 1336, 295-302.
  • 29. Rehman, A., Collis, C.S., Yang, M., Kelly, M., Diplock, A.T., Halliwell, B. & Riceevans, C. (1998) The effects of iron and vitamin C co-supplementation on oxidative damage to DNA in healthy volunteers. Biochem. Biophys. Res. Commun. 246, 293-298.
  • 30. Podmore, I.D., Griffiths, H.R., Herbert, K.E., Mistry, N., Mistry, P. & Lunec, J. (1998) Vita­min C exhibits pro-oxidant properties. Nature 392, 559.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-69f25333-7b37-48bb-bdcf-4ad72b8a702c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.