PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 48 | 4 |

Tytuł artykułu

Methods to predict transgressive segregation in barley and other self-pollinated crops

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Most of agronomically important characters are biometric traits. An improvement of these traits in cultivated plants by deriving segregants superior to parents, which could be developed as cultivars, is a main goal in breeding of self-pollinated crops. Two problems need to be solved: when will the progeny be better than its parents and how can a genetic potential of a given pair of parental genotypes be predicted? In this paper, transgressive segregation in homozygous barley populations is shortly reviewed. Various approaches to choosing parental forms are shown, and a theoretical method for predicting the frequency of transgressive segregants in a homozygous population is presented. Additionally, relationships between parental diversity estimated with molecular markers and the progeny performance are discussed. Although the prediction of transgressive segregation is still a problem, it seems promising to apply an approach measuring the performance of the parental genotypes and estimating their genetic distance by molecular markers.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

48

Numer

4

Opis fizyczny

p.321-328,ref.

Twórcy

autor
  • Institute of Plant Genetics, Polish Academy Of Sciences, Strzeszynska 34, 60-479 Poznan, Poland
autor
  • Institute of Plant Genetics, Polish Academy Of Sciences, Strzeszynska 34, 60-479 Poznan, Poland
autor
  • Institute of Plant Genetics, Polish Academy Of Sciences, Strzeszynska 34, 60-479 Poznan, Poland

Bibliografia

  • Adamski T, 1993. Wykorzystanie linii podwojonych haploidów w analizie statystyczno-genetycznej cech ilościowych [Application of doubled haploid lines for statistic-genetic analysis of quantitative traits]. Rozprawy i Monografie [Treatises and Monographs] No. 2, Institute of Plant Genetics PAS, Poznań: 62.
  • Backes G, Graner A, Foroughi-Wehr B, Fischbeck G, Wenzel G, Jahoor A, 1995. Localization of quantitative trait loci (QTL) for agronomic important characters by the use of a RFLP in barley (Hordeum vulgare L.). Theor Appl Genet 90: 294-302.
  • Barbacki S, Caliński T, Surma M, Kurhańska G, Adamski T, Kaczmarek Z, et al. 1978a. Transgressions in barley (Hordeum sativum Jess.). 7a. Transgressions of F₆ and F₇ hybrids Burea × Brown. Genet Pol 19: 403-421.
  • Barbacki S, Caliński T, Surma M, Kurhańska G, Adamski T, Kaczmarek Z, et al. 1978b. Transgressions in barley {Hordeum sativum Jess.). 7b. Transgressions of F₆ and F₇ hybrids from the crosses Alasa × Burea, Impala × Himalaya, Lubuski × Lonhi, Lubuski × Brage Körn and Kazimierski × Brage Körn. Genet Pol 19: 423-436.
  • Barbosa-Neto JF, Sorrels ME, Cisar G, 1996. Prediction of heterosis in wheat using coefficient of parentage and RFLP-based estimates of genetic relationship. Genome 39: 1142-1149.
  • Bohn M, Utz HF, Melchinger AE, 1999. Genetic similarities among winter wheat cultivars determined on the basis of RFLPs, AFLPs, and SSRs and their use for predicting progeny variance. Crop Sci 39: 228-237.
  • Briggs KG, 1974. Study of combining ability for grain protein percentage in a diallel cross of five six-rowed barley cultivars. Can J Plant Sci 54: 605-609.
  • Burkhamer RL, Lanning SP, Martens RJ, Martin JM, Talbert LE, 1998. Predicting progeny variance form parental divergence in hard red spring wheat. Crop Sci 38: 243-248.
  • Caligari PDS, Powell W, Jinks JL, 1985. The use of doubled haploids in barley breeding. 2. The assessment of univariate cross prediction methods. Heredity 54: 353-358.
  • Chase SS, 1952. Production of homozygous diploids of maize from monoploids. Agron J 44: 263-267.
  • Choo TM, 1981. Doubled haploids for studying the inheritance of quantitative characters. Genetics 99: 525-540.
  • Choo TM, Kotecha A, Reinbergs E, Song LSP, Fejer SO, 1986. Diallel analysis of grain yield in barley using doubled haploid lines. Plant Breeding 97: 129-137.
  • Choo TM, Reinbergs E, 1979. Doubled haploids for estimating genetic variances in presence of linkage and gene association. Theor Appl Genet 55: 129-132.
  • Compton WA, 1968. Recurrent selection in self-pollinated crops without extensive crossing. Crop Sci 8: 773.
  • Corbellini M, Perenzin M, Accerbi M, Vaccino P, Borghi B, 2002. Genetic diversity in bread wheat, as revealed by coefficient of parentage and molecular markers, and its relationship to hybrid performance. Euphytica 123: 273-285.
  • Dobek A, Kaczmarek Z, Kiełczewska H, Łuczkiewicz T, 1977. Podstawy i założenia analizy statystycznej krzyżówek diallelicznych. I. Analiza wariancji [Principles and assumptions of statistic analysis of diallel crosses. I. Analysis of variance]. 7th Methodological Colloquium in Agro-Biometry. PAN, Warszawa: 332-353.
  • Dobek A, Kaczmarek Z, Kiełczewska H, Łuczkiewicz T, 1978. Podstawy i założenia analizy statystycznej krzyżówek diallelicznych. II. Analiza genetyczna [Principles and assumptions of statistic analysis of diallel crosses. I. Genetic analysis]. 8th Methodological Colloquium in Agro-Biometry. PAN, Warszawa: 146-168.
  • Fedak G, 1976. Evaluation of doubled haploids in barley. Z Pflanzenzüchtg 76: 147-151.
  • Fejer SO, Fedak G, 1984, Yield and protein content in a diallel cross of Hiproly and other two-rowed barley cultivars. Cereal Res Commun 12: 209-213.
  • Friedt W, Foroughi-Wehr B, 1983. Field performance of androgenetic doubled haploid spring barley form F₁ hybrids. Z Pflanzenzüchtg 90: 177-184.
  • Gallais A, 1993. Efficiency of recurrent selection methods to improve the line value of a population. Plant Breeding 111: 31-41.
  • Goldringer I, Brabant P, Gallais A, 1996. Theoretical comparison of recurrent selection methods for the improvement of self-pollinated crops. Crop Sci 36: 1171-1180.
  • Góral H, Tyrka M, Spiss L, 2005. Assessing genetic variation to predict the breeding value of winter triticale cultivars and lines. J Appl Genet 46: 125-131.
  • Grafíus JE, 1959. A generalised treatment of the use of diallel crosses in quantitative inheritance. Heredity 10: 31-50.
  • Griffing B, 1956. Concept of general and specific combining ability in relation to diallel crossing systems. Aust J Biol Sci 9: 463-492.
  • Hallauer AR, 1968. Selection and breeding methods. In: Frey KJ, ed. Plant breeding II. Iowa State University Press.
  • Hayes PM, Blake T, Chen THH, Tragoonrung S, Chen F, Pan A, Liu B, 1993. Quantitative trait loci on barley (Hordeum vulgare L.) chromosome 7 associated with components of winterhardiness. Genome 36: 66-71.
  • Hockett EA, Cook AF, Khan MA, Martin JM, Jones BL, 1993. Hybrid performance and combining ability for yield and malt quality in a diallel cross of barley. Crop Sci 33: 1239-1244.
  • Jinks JL, 1978. Unambiguous test for linkage of genes displaying nonallelic interactions for a metrical trait. Heredity 40: 171-173.
  • Jinks JL, Pooni HS, 1976. Predicting the properties of recombinant inbred lines derived by single seed descent. Heredity 36: 253-266.
  • Johnson LPV, Aksel R, 1959. Inheritance of yielding capacity in a fifteen-parental diallel cross of barley. Can J Genet Cytol 1: 208-265.
  • Johnson LPV, Aksel R, 1964. The inheritance of malting quality and agronomic characters in a diallel cross of barley. Can J Genet Cytol 6: 178-200.
  • Kaczmarek Z, Surma M, Adamski T, 1988. Epistatic effects in estimation of the number of genes on the basis of doubled haploid lines. Genet Pol 29: 253-259.
  • Kaczmarek Z, Surma M, Adamski T, 1994. Theoretical bases for detection of linkage of genes between two quantitative characters in the presence of nonallelic interaction. Genet Pol 35: 53-62.
  • Kasha KJ, Kao KN, 1970. High frequency haploid production in barley (Hordeum vulgare L.). Nature 225: 874-876.
  • Kjær B, Haahr V, Jensen J, 1991. Associations between 23 quantitative traits and 10 genetic markers in barley cross. Plant Breeding 106: 261-274.
  • Kleinhofs A, Han F, 2002. Molecular mapping of the barley genome. In: Slafer GA, Molina-Cano JL, Savin R, Araus JL, Romagosa I, eds. Barley science: recent advances from molecular biology to agronomy of yield and quality. New York: Food Products Press: 31-63.
  • Kuczyńska A, Surma M, Kaczmarek Z, Adamski T, 2007. Relationship between phenotypic and genetic diversity of parental genotypes and the frequency of transgression effects in barley (Hordeum vulgare L.). Plant Breeding (in print).
  • Martin JM, Blake TK, Hockett EA, 1991. Diversity among North American spring barley cultivars based on coefficients of parentage. Crop Sci 31: 1131-1137.
  • Martin JM, Talbert LE, Lanning SP, Blake NK, 1995. Hybrid performance in wheat as related to parental diversity. Crop Sci 35: 104-108.
  • Mather K, 1949. Biometrical Genetics. London: Methuen & Co.
  • Mather K, Jinks JL, 1982. Biometrical Genetics (3rd edn.). London: Chapman and Hall.
  • Melchinger AE, Lee M, Lamkey KR, Hallauer AR, Woodman WL, 1990. Genetic diversity for restriction fragment length polymorphisms and heterosis for two diallel sets of maize hybrids. Theor Appl Genet 80: 488-496.
  • Moser H, Lee M, 1994. RFLP variation and genealogical distance, multivariate distance, heterosis, and genetic variance in oats. Theor Appl Genet 87: 947-956.
  • Patel JD, Reinbergs E, Fejer SO, 1985. Recurrent selection in doubled-haploid populations of barley (Hordeum vulgare L.). Can J Genet Cytol 27: 172-177.
  • Pickering RA, Devaux P, 1992. Haploid production: Approaches and use in plant breeding. In: Shewry PR, ed. Barley: genetics, biochemistry, molecular biology and biotechnology. Wallingford, CAB International: 519-547.
  • Powell W, Thomas WTB, 1992. A comparison of the phenotypic distribution of single seed descent families and second cycle hybrids in barley. J Genet Breed 46: 91-98.
  • Rieseberg LH, et al. 1999. Transgressive segregation, adaptation and speciation. Heredity 83: 363-372.
  • Riggs TJ, Snape J, 1977. Effects of linkage and interaction in a comparison of theoretical populations derived by diploidized haploid and single seed descent methods. Theor Appl Genet 49: 111-115.
  • Rutger JN, Schaller CW, Dickson AD, Williams JC, 1966. Variation and covariation in agronomic and malting quality characters in barley. I. Heritability estimates. Crop Sci 6: 231-234.
  • Saghai Maroof MA, Yang GP, Zhang Q, Gravois KA, 1997. Correlation between molecular marker distance and hybrid performance in U.S. Southern long grain rice. Crop Sci 37: 145-150.
  • Shieh GJ, Thseng FS, 2002. Genetic diversity of Tainan-white maize inbred lines and prediction of single cross hybrid performance using RAPD markers. Euphytica 124: 307-313.
  • Snape JW, 1976. A theoretical comparison of diploidised haploid and single seed descent populations. Heredity 36: 275-277.
  • Snape JW, 1997. Application of doubled haploid lines in plant breeding and genetical research: current issues and approaches. In: Krajewski P, Kaczmarek Z, eds. Advances in biometrical genetics. Proceedings of the 10th Meeting of the Eucarpia Section Biometrics in Plant Breeding, 14-16 May 1997, Poznań, Poland: 35-46.
  • Song LPS, Park SJ, Reinbergs E, Choo TM, Kasha KJ, 1978. Doubled haploid vs bulk method for production of homozygous lines in barley. Z Pflanzenzüchtg 81: 271-280.
  • Souza E, Sorrells ME, 1991. Prediction of progeny variation in oat from parental genetic relationships. Theor Appl Genet 82: 233-241.
  • Strahwald JF, Geiger HH, 1988. Theoretical studies on the usefulness of doubled haploids for improving the efficiency of recurrent selection in spring barley. Proceedings of the 7th Meeting of the EUCARPIA Section Biometrics in Plant Breeding, August 2-5, As, Norway.
  • Surma M, 1978. Diallel analysis of the number of spikes, number of spikelets per spike, 1000-kernel weight and protein content in spring barley (Hordeum vulgare L.). Genet Pol 19: 377-402.
  • Surma M, 1996. Biometryczno-genetyczna analiza cech ilościowych mieszańców i linii podwojonych haploidów jęczmienia jarego [Biometric-genetic analysis of quantitative traits of hybrids and doubled haploid lines of spring barley]. Rozprawy i Monografie [Treatises and Monographs] No. 3, Institute of Plant Genetics PAS, Poznań: 110.
  • Surma M, Adamski T, 1982. Diallel analysis of the yield structure components in spring barley (Hordeum vulgare L.). Genet Pol 23: 41-50.
  • Surma M, Adamski T, Kaczmarek Z, 1991. Linkage of genes controlling quantitative characters in barley DH lines. Proceedings of the 8th Meeting of the EUCARPIA Section Biometrics in Plant Breeding, July 1-6, Brno: 367-373.
  • Surma M, Adamski T, Kaczmarek Z, Kapała A, 1998. Frequency of transgression and gene distribution in barley doubled haploid populations from first and second cycle hybrids. J Appl Genet 39: 237-247.
  • Surma M, Kaczmarek Z, Adamski T, 2000. Predicted and observed frequencies of transgression effects in barley doubled haploids. (in Polish with English summary). Bulletin of Plant Breeding and Acclimatization Institute 216: 195-199.
  • Surma M, Adamski T, Kaczmarek Z, Czajka S, 2006. Phenotypic distribution of barley SSD lines and doubled haploids derived from F₁ and F₂ hybrids. Euphytica 149: 19-25.
  • Thomas WTB, 1987. The use of random F₃ families for cross prediction in spring barley. J Agrie Sci 108: 431-436.
  • Thomas WTB, Powell W, Waugh R, Chalmers KJ, Baura UM, Jack P, et al. 1995. Detection of quantitative trait loci for agronomic, yield, grain and disease characters in spring barley (Hordeum vulgare L.). Theor Appl Genet 91: 1037-1047.
  • Tinker NA, Mather DE, Rossnagel BG, Kasha KJ, Kleinhofs A, Hayes PM, et al. 1996. Regions of the genome that affect agronomic performance in two-row barley. Crop Sci 36: 1053-1062.
  • Warzecha T, Adamski T, Surma M, Kaczmarek Z, 2000. Genetic variability of grain size in population of hulled and hulless barley doubled haploids (in Polish with English summary). Bulletin of Plant Breeding and Acclimatization Institute 216: 189-194.
  • Xu W, Virmani SS, Hernandez JE, Sebastian LS, Redona ED, Li Z, 2002. Genetic diversity in the parental lines and heterosis of the tropical rice hybrids. Euphytica 127: 139-148.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-6928df6c-67b1-477e-a882-3b3aa0abeaa4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.