PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | 47 | 3 |

Tytuł artykułu

Regulation of Ca2plus release from internal stores in cardiac and skeletal muscles

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
It is widely accepted that Ca2+ is released from the sarcoplasmic reticulum by a specialized type of calcium channel, i.e., ryanodine receptor, by the process of Ca2+-induced Ca2+ release. This process is triggered mainly by dihydropyridine receptors, i.e., L-type (long lasting) calcium channels, directly or indirectly interacting with ryanodine receptor. In addition, multiple endogenous and exogenous compounds were found to modulate the activity of both types of calcium channels, ryanodine and dihydropyridine receptors. These compounds, by changing the Ca2+ transport activity of these channels, are able to influence intracellular Ca2+ homeostasis. As a result not only the overall Ca2+ concentration becomes affected but also spatial distribution of this ion in the cell. In cardiac and skeletal muscles the release of Ca2+ from internal stores is triggered by the same transport proteins, although by their specific isoforms. Concomitantly, heart and skeletal muscle specific regulatory mechanisms are different.

Wydawca

-

Rocznik

Tom

47

Numer

3

Opis fizyczny

p.705-723,fig.

Twórcy

autor
  • Nencki Institute of Experimental Biology, L.Pasteura 3, 02-093 Warsaw, Poland

Bibliografia

  • Ashley, R.H. (1989) Activation and conductance properties of ryanodine-sensitive calcium channels from brain microsomal membranes incorporated into planar lipid bilayers. J. Membr. Biol. 111, 179-189.
  • Ashley, R.H. & Williams, A.J. (1990) Divalent cat­ion activation and inhibition of single calcium release channels from sheep cardiac sarco- plasmic reticulum. J. Gen. Physiol. 95, 981-1005.
  • Avila, G. & Dirksen, R.T. (2000) Functional impact of the ryanodine receptor on the skeletal mus- 2+ cle L-type Ca channel. J. Gen. Physiol. 115, 467-480.
  • Balog, E.M., Fruen, B.R., Kane, P.K. & Louis, C.F. (2000) Mechanisms of Pi regulation of the skel- 2+ etal muscle SR Ca release channel. Am. J. Physiol. Cell Physiol. 278, C601-C611.
  • Berg, J.M. & Shi, Y. (1996) The galvanization of bi­ology: A growing appreciation for the roles of zinc. Science 271, 1081-1085.
  • Bers, D.M. (1991) Excitation-Contraction coupling and Cardiac Contractile Force; pp. 119-148. Kluwer Academic Publishers, Dordrecht, Boston, London.
  • Blazev, R. & Lamb, G.D. (1999a) Adenosine inhib­its depolarization-induced Ca2+ release in mammalian skeletal muscle. Muscle Nerve 22, 1674-1683.
  • Blazev, R. & Lamb, G.D. (1999b) Low [ATP] and elevated [Mg2+ ] reduce depolarization-induced Ca2+ release in rat skinned skeletal muscle fibres. J. Physiol. (London) 520, 203-215.
  • Boixel, C., Tessier, S., Pansard, Y., Lang- Laz- dunski, L., Mercadier, J.J. & Hatem, S.N. (2000) Tyrosine kinase and protein kinase C regulate L-type Ca2+ current cooperatively in human atrial myocytes. Am. J. Physiol. Heart Circ. Physiol. 278, H670-H676.
  • Bunemann, M., Gerhardstein, B.L., Gao, T. & Hosey, M.M. (1999) Functional regulation of L-type calcium channels via protein kinase A-mediated phosphorylation of the P2 subunit. J. Biol. Chem. 274, 33851-33854.
  • Campbell, K.P., Knudson, C.M., Imagawa, T., Leung, A.T., Sutko, J.L., Kahl, S.D., Raab, C.R. & Madson, L. (1987) Identification and characterization of the high affinity [3H]ry- anodine receptor of the junctional sarco­plasmic reticulum Ca2+ release channel. J. Biol. Chem. 262, 6460-6463.
  • Caswell, A.H., Brandt, N.R., Brunschwig, J.P. & Purkerson, S. (1991) Localization and partial characterization of the oligomeric disulfide- linked molecular weight 95000 protein (triadin) which binds the ryanodine and dihydropyridine receptors in skeletal muscle triadic vesicles. Biochemistry 30, 7507-7513.
  • Cheah, A.M. (1981) Effect of long chain unsatu- rated fatty acids on the calcium transport of sarcoplasmic reticulum. Biochim. Biophys. Acta 648, 113-119.
  • Chen, S.R., Ebisawa, K., Li, X. & Zhang, L. (1998)
  • Molecular identification of the ryanodine receptor Ca2+ sensor. J. Biol. Chem. 273, 14675-14678.
  • Chen, S.R., Zhang, L. & MacLennan, D.H. (1992) Characterization of a Ca2+ binding and regula­tory site in the Ca2+ release channel (ryano- dine receptor) of rabbit skeletal muscle sarco- plasmic reticulum. J. Biol. Chem. 267, 23318-23326.
  • Chen, S.R., Zhang, L. & MacLennan, D.H. (1993) Antibodies as probes for Ca2+ activation sites in the Ca2+ release channel (ryanodine recep­tor) of rabbit skeletal muscle sarcoplasmic re- ticulum. J. Biol. Chem. 268, 13414-13421.
  • Chen, S.R.W., Li, X., Ebisawa, K. & Zhang, L. (1997) Functional characterization of the re­combinant type 3 Ca2+ release channel (ryanodine receptor) expressed in HEK293 cells. J. Biol. Chem. 272, 24234-24246.
  • Cheng, H., Lederer, W.J. & Cannell, M.B. (1993) Calcium sparks: Elementary events underly­ing excitation-contraction coupling in heart muscle. Science 262, 740-744.
  • Cheng, H., Lederer, M.R., Xiao, R.P., Gomez, A.M., Zhou, Y.Y., Ziman, B., Spurgeon, H., Lakatta, E.G. & Lederer, W.J. (1996) Excita­tion-contraction coupling in heart: New in- sights from Ca2+ sparks. Cell Calcium 20, 129-140.
  • Chiesi, M., Wrzosek, A. & Grueninger, S. (1994) The role of the sarcoplasmic reticulum in vari­ous types of cardiomyocytes. Mol. Cell. Biochem. 130, 159-171.
  • Cho, M.C., Rapacciuolo, A., Koch, W.J., Kobay- ashi, Y., Jones, L.R. & Rockman, H.A. (1999) Defective beta-adrenergic receptor signaling precedes the development of dilated cardio- myopathy in transgenic mice with calse- questrin overexpression. J. Biol. Chem. 274, 22251-22256.
  • Coronado, R., Morrissette, J., Sukhareva, M. & Vaughan, D.M. (1994) Structure and function of ryanodine receptors. Am. J. Physiol. 266, C1485-C1504.
  • Damron, D.S. & Bond, M. (1993) Modulation of Ca2+ cycling in cardiac myocytes by arachi- donic acid. Circ. Res. 72, 376-386.
  • Diaz-Munoz, M., Hamilton, S.L., Kaetzel, M.A., Hazarika, P. & Dedman, J.R. (1990) Modula­tion of Ca2+ release channel activity from sarcoplasmic reticulum by annexin VI (67-kDa calcimedin). J. Biol. Chem. 265, 15894­15899.
  • Donoso, P., Aracena, P. & Hidalgo, C. (2000) Sulfhydryl oxidation overrides Mg2+ inhibi­tion of calcium-induced calcium release in skel­etal muscle triads. Biophys. J. 79, 279-286.
  • Dutka, T.L. & Lamb, G.D. (2000) Effect of lactate on depolarization-induced Ca2+ release in me­chanically skinned skeletal muscle fibers. Am. J. Physiol. 278, C517-C525.
  • Eisner, D.A., Trafford, A.W., Diaz, M.E., Overend, C.L. & O'Neil, S.C. (1998) The control of Ca re­lease from the cardiac sarcoplasmic reticulum: Regulation versus autoregulation. Cardiovasc. Res. 38, 589-604.
  • el-Hayek, R., Valdivia, C., Valdivia, H.H., Hogan, K. & Coronado, R. (1993) Activation of the Ca2+ release channel of skeletal muscle sarco- plasmic reticulum by palmitoyl carnitine. Biophys. J. 65, 779-789.
  • Endo, M., Tanaka, M. & Ogawa, Y. (1970) Calcium induced release of calcium from the sarco- plasmic reticulum of skinned skeletal muscle fibres. Nature 228, 34-36.
  • Fabiato, A. (1985a) Rapid ionic modifications dur­ing the aequorin-detected calcium transient in a skinned canine cardiac Purkinje cell. J. Gen. Physiol. 85, 189-246.
  • Fabiato, A. (1985b) Time and calcium dependence of activation and inactivation of calcium-in­duced release of calcium from the sarco- plasmic reticulum of a skinned canine cardiac Purkinje cell. J. Gen. Physiol. 85, 247-289.
  • Favero, T.G., Zable, A.C., Bowman, M.B., Thomp­son, A. & Abramson, J.J. (1995) Metabolic end products inhibit sarcoplasmic reticulum Ca2+ 3 release and [ H]ryanodine binding. J. Appl. Physiol. 78, 1665-1672.
  • Fitts, R.H. (1994) Cellular mechanisms of muscle fatigue. Physiol. Rev. 74, 49-94.
  • Flucher, B.E. & Franzini-Armstrong, C. (1996) Formation of junctions involved in excita­tion-contraction coupling in skeletal and car­diac muscle. Proc. Natl. Acad. Sci. U.S.A. 93, 8101-8106.
  • Flucher, B.E., Phillips, J.L., Powell, J.A., Andrews, S.B. & Daniels, M.P. (1992) Coordinated devel­opment of myofibrils, sarcoplasmic reticulum and transverse tubules in normal and dysgenic mouse skeletal muscle, in vivo and in vitro. Dev. Biol. 150, 266-280.
  • Franzini-Armstrong, C. & Protasi, F. (1997) Ryanodine receptors of striated muscles: A complex channel capable of multiple interac­tions. Physiol. Rev. 77, 699-729.
  • Fruen, B.R., Mickelson, J.R., Shomer, N.H., Roghair, T.J. & Louis, C.F. (1994) Regulation of the sarcoplasmic reticulum ryanodine re­ceptor by inorganic phosphate. J. Biol. Chem. 269, 192-198.
  • Fuentes, O., Valdivia, C., Vaughan, D., Coronado, R. & Valdivia, H.H. (1994) Calcium-dependent block of ryanodine receptor channel of swine skeletal muscle by direct binding of calmo- dulin. Cell Calcium 15, 305-316.
  • Galione, A. (1992) Ca2+ -induced Ca2+ release and its modulation by cyclic ADP-ribose. Trends Pharmacol. Sci. 13, 304-306.
  • Galione, A., Lee, H.C. & Busa, W.B. (1991) Ca2+-in- duced Ca2+ release in sea urchin egg homo- genates: Modulation by cyclic ADP-ribose. Sci­ence 253, 1143-1146.
  • Giannini, G., Clementi, E., Ceci, R., Marziali, G. & Sorrentino, V. (1992) Expression of a ryano­dine receptor- Ca2+ channel that is regulated by TGF-beta. Science 257, 91-94.
  • Grabner, M., Dirksen, R.T., Suda, N. & Beam, K.G. (1999) The II-III loop of the skeletal muscle dihydropyridine receptor is responsible for the bi-directional coupling with the ryanodine receptor. J. Biol. Chem. 274, 21913-21919.
  • Groh, S., Marty, I., Ottolia, M., Prestipino, G., Chapel, A., Villaz, M. & Ronjat, M. (1999) Functional interaction of the cytoplasmic do­main of triadin with the skeletal ryanodine re­ceptor. J. Biol. Chem. 274, 12278-12283.
  • Gunteski-Hamblin, A.M., Song, G., Walsh, R.A., Frenzke, M., Boivin, G.P., Dorn, 2nd, G.W., Kaetzel, M.A., Horseman, N.D. & Dedman, J.R. (1996) Annexin VI overexpression tar­geted to heart alters cardiomyocyte function in transgenic mice. Am. J. Physiol. 270, H1091-H1100.
  • Guo, W., Jorgensen, A.O. & Campbell, K.P. (1996a) Triadin, a linker for calsequestrin and the ryanodine receptor. Soc. Gen. Physiol. Ser. 51, 19-28.
  • Guo, W., Jorgensen, A.O., Jones, L.R. & Campbell, K.P. (1996b) Biochemical characterization and molecular cloning of cardiac triadin. J. Biol. Chem. 271, 458-465.
  • Haarmann, C.S., Fink, R.H. & Dulhunty, A.F. (1999) Oxidation and reduction of pig skeletal muscle ryanodine receptors. Biophys. J. 77, 3010-3022.
  • Haase, H., Podzuweit, T., Lutsch, G., Hohaus, A., Kostka, S., Lindschau, C., Kott, M., Kraft, R. & Morano, I. (1999) Signaling from beta-adre- noceptor to L-type calcium channel: Identifi­cation of a novel cardiac protein kinase A tar­get possessing similarities to AHNAK. FASEB J. 13, 2161-2172.
  • Hadad, N., Meyer, H.E., Varsanyi, M., Fleischer, S. & Shoshan-Barmatz, V. (1999) Cardiac sarca- lumenin: Phosphorylation, comparison with the skeletal muscle sarcalumenin and modula­tion of ryanodine receptor. J. Membr. Biol. 170, 39-49.
  • Hadad, N., Zable, A.C., Abramson, J.J. & Shoshan-Barmatz, V. (1994) Ca2+ binding sites of the ryanodine receptor/ Ca2+ release chan­nel of sarcoplasmic reticulum. Low affinity binding site(s) as probed by terbium fluores­cence. J. Biol. Chem. 269, 24864-24869.
  • Haddad, G.E., Sperelakis, N. & Bkaily, G. (1995) Regulation of the calcium slow channel by cy­clic GMP dependent protein kinase in chick heart cells. Mol. Cell. Biochem. 148, 89-94.
  • Hakamata, Y., Nakai, J., Takeshima, H. & Imoto, K. (1992) Primary structure and distribution of a novel ryanodine receptor/calcium release channel from rabbit brain. FEBS Lett. 312, 229-235.
  • Harrison, S.M. & Bers, D.M. (1987) The effect of temperature and ionic strength on the appar­ent Ca-affinity of EGTA and the analogous Ca-chelators BAPTA and dibromo-BAPTA. Biochim. Biophys. Acta 925, 133-143.
  • Hart, J.D. & Dulhunty, A.F. (2000) Nitric oxide ac­tivates or inhibits skeletal muscle ryanodine receptors depending on its concentration, membrane potential and ligand binding. J. Membr. Biol. 173, 227-236.
  • Hashii, M., Minabe, Y. & Higashida, H. (2000) cADP-ribose potentiates cytosolic Ca2+ elevation and Ca2+ entry via L-type voltage-activated Ca2+ channels in NG108-15 neuronal cells. Biochem. J. 345, 207-215.
  • He, J.Q., Pi, Y., Walker, J.W. & Kamp, T.J. (2000) Endothelin-1 and photoreleased diacylglycerol increase L-type Ca2+ current by activation of protein kinase C in rat ventricular myocytes. J. Physiol. (London) 524, 807-820.
  • Hua, S.Y., Tokimasa, T., Takasawa, S., Furuya, Y., Nohmi, M., Okamoto, H. & Kuba, K. (1994) Cyclic ADP-ribose modulates Ca2+ release chan­nels for activation by physiological Ca2+ entry in bullfrog sympathetic neurons. Neuron 12, 1073-1079.
  • Iino, S., Cui, Y., Galione, A. & Terrar, D.A. (1997) Actions of cADP-ribose and its antagonists on contraction in guinea pig isolated ventricular myocytes. Influence of temperature. Circ. Res. 81, 879-884.
  • Ikemoto, T., Iino, M. & Endo, M. (1995) Enhancing effect of calmodulin on Ca2+-induced Ca2+ re­lease in the sarcoplasmic reticulum of rabbit skeletal muscle fibres. J. Physiol. (London) 487, 573-582.
  • Isenberg, G., Etter, E.F., Wendt-Gallitelli, M.F., Schiefer, A., Carrington, W.A., Tuft, R.A. & Fay, F.S. (1996) Intrasarcomere [Ca2+] gradi­ents in ventricular myocytes revealed by high speed digital imaging microscopy. Proc. Natl. Acad. Sci. U.S.A. 93, 5413-5418.
  • Jeyakumar, L.H., Copello, J.A., O'Malley, A.M., Wu, G.M., Grassucci, R., Wagenknecht, T. & Fleischer, S. (1998) Purification and charac­terization of ryanodine receptor 3 from mam­malian tissue. J. Biol. Chem. 273, 16011­16020.
  • Jiang, L.H., Gawler, D.J., Hodson, N., Milligan, C.J., Pearson, H.A., Porter, V. & Wray, D. (2000) Regulation of cloned cardiac L-type cal­cium channels by cGMP-dependent protein kinase. J. Biol. Chem. 275, 6135-6143.
  • Jones, S.W. (1998) Overview of voltage-dependent calcium channels. J. Bioenerg. Biomembr. 30, 299-312.
  • Jones, L.R., Zhang, L., Sanborn, K., Jorgensen, A.O. & Kelley, J. (1995) Purification, primary structure, and immunological characteriza­tion of the 26-kDa calsequestrin binding pro­tein (junctin) from cardiac junctional sarcoplasmic reticulum. J. Biol. Chem. 270, 30787-30796.
  • Jones, L.R., Suzuki, Y.J., Wang, W., Kobayashi, Y.M., Ramesh, V., Franzini-Armstrong, C., Cleemann, L. & Morad, M. (1998) Regulation of Ca2+ signaling in transgenic mouse cardiac myocytes overexpressing calsequestrin. J. Clin. Invest. 101, 1385-1393.
  • Jurkat-Rott, K., McCarthy, T. & Lehmann-Horn, F. (2000) Genetics and pathogenesis of malig­nant hyperthermia. Muscle Nerve 23, 4-17.
  • Kentish, J.C. & Xiang, J.Z. (1997) Ca2+- and caf­feine-induced Ca2+ release from the sarco­plasmic reticulum in rat skinned trabeculae: effects of pH and Pi. Cardiovasc. Res. 33, 314-323.
  • Kermode, H., Williams, A.J. & Sitsapesan, R. (1998) The interactions of ATP, ADP, and inor­ganic phosphate with the sheep cardiac ryano- dine receptor. Biophys. J. 74, 1296-1304.
  • Kim, S., Shin, D.W., Kim, D.H. & Eom, S.H. (1999) Crystallization and preliminary X-ray crystallographic studies of the D2 region of the skeletal muscle ryanodine receptor. Acta Crystallogr. D. Biol. Crystallogr. 55, 1601­1603.
  • Knollmann, B.C., Knollmann-Ritschel, B.E., Weissman, N.J., Jones, L.R. & Morad, M. (2000) Remodelling of ionic currents in hyper- trophied and failing hearts of transgenic mice overexpressing calsequestrin. J. Physiol. (Lon­don) 525, 483-498.
  • Knudson, C.M., Stang, K.K., Jorgensen, A.O. & Campbell, K.P. (1993a) Biochemical character­ization of ultrastructural localization of a ma­jor junctional sarcoplasmic reticulum glyco- protein (triadin). J. Biol. Chem. 268, 12637­12645.
  • Knudson, C.M., Stang, K.K., Moomaw, C.R., Slaughter, C.A. & Campbell, K. (1993b) Pri­mary structure and topological analysis of a skeletal muscle-specific junctional sarcoplas- mic reticulum glycoprotein (triadin). J. Biol. Chem. 268, 12646-12654.
  • Kobayashi, Y.M. & Jones, L.R. (1999) Identifica­tion of triadin 1 as the predominant triadin isoform expressed in mammalian myocar­dium. J. Biol. Chem. 274, 28660-28668.
  • Kourie, J.I. (1998) Interaction of reactive oxygen species with ion transport mechanisms. Am. J. Physiol. 275, C1-C24.
  • Lamb, G.D. (2000) Excitation-contraction cou­pling in skeletal muscle: Comparisons with cardiac muscle. Clin. Exp. Pharmacol. Physiol. 27, 216-224.
  • Lamb, G.D. & Stephenson, D.G. (1994) Effects of intracellular pH and [Mg2+ ] on excita­tion-contraction coupling in skeletal muscle fibres of the rat. J. Physiol. (London) 478, 331-339.
  • Langer, G.A. & Peskoff, A. (1997) Role of the diadic cleft in myocardial contractile control. Circulation 96, 3761-3765.
  • Laver, D.R., Eager, K.R., Taoube, L. & Lamb, G.D. (2000) Effects of cytoplasmic and luminal pH on Ca2+ release channels from rabbit skeletal muscle. Biophys. J. 78, 1835-1851.
  • Leong, P. & MacLennan, D.H. (1998a) A 37-amino acid sequence in the skeletal muscle ryanodine receptor interacts with the cytoplasmic loop between domains II and III in the skeletal mus­cle dihydropyridine receptor. J. Biol. Chem. 273, 7791-7794.
  • Leong, P. & MacLennan, D.H. (1998b) Complex in­teractions between skeletal muscle ryanodine receptor and dihydropyridine receptor pro­teins. Biochem. Cell Biol. 76, 681-694.
  • Liu, W., Pasek, D.A. & Meissner, G. (1998) Modu­lation of Ca2+-gated cardiac muscle Ca2+-re- lease channel (ryanodine receptor) by mono- and divalent ions. Am. J. Physiol. 274, C120- C128.
  • Loke, J. & MacLennan, D.H. (1998) Malignant hyperthermia and central core disease: Disorders of Ca2+ release channels. Am. J. Med. 104, 470-486.
  • Lokuta, A.J., Meyers, M.B., Sander, P.R., Fishman, G.I. & Valdivia, H.H. (1997) Modula­tion of cardiac ryanodine receptors by sorcin. J. Biol. Chem. 272, 25333-25338.
  • Ma, J., Anderson, K., Shirokov, R., Levis, R., Gon­zalez, A., Karhanek, M., Hosey, M.M., Meiss­ner, G. & Rios, E. (1993) Effects of perchlorate on the molecules of excitation-contraction cou­pling of skeletal and cardiac muscle. J. Gen. Physiol. 102, 423-448.
  • Ma, J. & Zhao, J. (1994) Highly cooperative and hysteretic response of the skeletal muscle ryanodine receptor to changes in proton con­centrations. Biophys. J. 67, 626-633.
  • MacKrill, J.J. (1999) Protein-protein interactions in intracellular Ca2+-release channel function. Biochem. J. 337, 345-361.
  • Manunta, M., Rossi, D., Simeoni, I., Butelli, E., Romanin, C., Sorrentino, V. & Schindler, H. (2000) ATP-induced activation of expressed RyR3 at low free calcium. FEBS Lett. 471, 256-260.
  • Marks, A.R. (1996) Cellular functions of immuno- philins. Physiol. Rev. 76, 631-649.
  • Martinez-Azorin, F., Gomez-Fernandez, J.C. & Fernandez-Belda, F. (1993) Limited carbo- diimide derivatization modifies some func­tional properties of the sarcoplasmic reticulum Ca2+ release channel. Biochemistry 32, 8553-8559.
  • Marx, S.O., Reiken, S., Hisamatsu, Y., Jayaraman, T., Burkhoff, D., Rosemblit, N. & Marks, A.R. (2000) PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): Defective regulation in failing hearts. Cell 101, 365-376.
  • McDonald, L.J. & Murad, F. (1996) Nitric oxide and cyclic GMP signaling. Proc. Soc. Exp. Biol. Med. 211, 1-6.
  • McDonald, T.F., Pelzer, S., Trautwein, W. & Pelzer, D.J. (1994) Regulation and modulation of cal­cium channels in cardiac, skeletal, and smooth muscle cells. Physiol. Rev. 74, 365-507.
  • Meissner, G. (1984) Adenine nucleotide stimula­tion of Ca2+-induced Ca2+ release in sarcoplasmic reticulum. J. Biol. Chem. 259, 2365-2374.
  • Meissner, G. (1986) Ryanodine activation and in­hibition of the Ca2+ release channel of sarcoplasmic reticulum. J. Biol. Chem. 261, 6300-6306.
  • Meissner, G. (1994) Ryanodine receptor Ca re­lease channels and their regulation by endoge­nous effectors. Annu. Rev. Physiol. 56, 485­508.
  • Meissner, G. & Henderson, J.S. (1987) Rapid cal­cium release from cardiac sarcoplasmic reticu-
  • lum vesicles is dependent on Ca2+ and is modulated by Mg2+ , adenine nucleotide, and calmodulin. J. Biol. Chem. 262, 3065-3073.
  • Meissner, G., Rios, E., Tripathy, A. & Pasek, D.A.(1997) Regulation of skeletal muscle Ca2+ re­lease channel (ryanodine receptor) by Ca2+ and monovalent cations and anions. J. Biol. Chem. 272, 1628-1638.
  • Menegazzi, P., Larini, F., Treves, S., Guerrini, R., Quadroni, M. & Zorzato, F. (1994) Identifica­tion and characterization of three calmodulin binding sites of the skeletal muscle ryanodine receptor. Biochemistry 33, 9078-9084.
  • Messineo, F.C., Rathier, M., Favreau, C., Watras, J. & Takenaka, H. (1984) Mechanisms of fatty acid effects on sarcoplasmic reticulum. III. The effects of palmitic and oleic acids on sarcoplasmic reticulum function — a model for fatty acid membrane interactions. J. Biol. Chem. 259, 1336-1343.
  • Meyers, M.B., Pickel, V.M., Sheu, S.S., Sharma, V.K., Scotto, K.W. & Fishman, G.I. (1995) As­sociation of sorcin with the cardiac ryanodine receptor. J. Biol. Chem. 270, 26411-26418.
  • Meyers, M.B., Puri, T.S., Chien, A.J., Gao, T., Hsu, P.H., Hosey, M.M. & Fishman, G.I. (1998) Sorcin associates with the pore-forming sub­unit of voltage-dependent L-type Ca2+ chan­nels. J. Biol. Chem. 273, 18930-18935.
  • Michalak, M. (1988) Identification of the Ca2+-re- lease activity and ryanodine receptor in sarco- plasmic-reticulum membranes during cardiac myogenesis. Biochem. J. 253, 631-636.
  • Michalak, M., Dupraz, P. & Shoshan-Barmatz, V. (1988) Ryanodine binding to sarcoplasmic re- ticulum membrane; Comparison between car­diac and skeletal muscle. Biochim. Biophys. Acta 939, 587-594.
  • Mitchell, R.D., Simmerman, H.K. & Jones, L.R. (1988) Ca binding effects on protein confor­mation and protein interactions of canine car­diac calsequestrin. J. Biol. Chem. 263, 1376­1381.
  • Mitterdorfer, J., Grabner, M., Kraus, R.L., Hering, S., Prinz, H., Glossmann, H. & Striessnig, J. (1998) Molecular basis of drug interaction with L-type Ca2+ channels. J. Bioenerg. Biomembr. 30, 319-334.
  • Mohabir, R., Lee, H.C., Kurz, R.W. & Clusin, W.T. (1991) Effects of ischemia and hypercarbic aci- dosis on myocyte calcium transients, contrac­tion, and pHi in perfused rabbit hearts. Circ. Res. 69, 1525-1537.
  • Murayama, T., Kurebayashi, N. & Ogawa, Y. (2000) Role of Mg2+ in Ca2+-induced Ca2+ re­lease through ryanodine receptors of frog skel­etal muscle: Modulations by adenine nucleo- tides and caffeine. Biophys. J. 78,1810-1824.
  • Murayama, T., Oba, T., Katayama, E., Oyamada, H., Oguchi, K., Kobayashi, M., Otsuka, K. & Ogawa, Y. (1999) Further characterization of the type 3 ryanodine receptor (RyR3) purified from rabbit diaphragm. J. Biol. Chem. 274, 17297-17308.
  • Murayama, T. & Ogawa, Y. (1997) Characteriza­tion of type 3 ryanodine receptor (RyR3) of sarcoplasmic reticulum from rabbit skeletal muscles. J. Biol. Chem. 272, 24030-24037.
  • Nakai, J., Imagawa, T., Hakamat, Y., Shigekawa, M., Takeshima, H. & Numa, S. (1990) Primary structure and functional expression from cDNA of the cardiac ryanodine receptor/cal­cium release channel. FEBS Lett. 271, 169-777.
  • Needleman, D.H., Aghdasi, B., Seryshev, A.B., Schroepfer, Jr., G.J. & Hamilton, S.L. (1997) Modulation of skeletal muscle Ca2+ -release channel activity by sphingosine. Am. J. Physiol. 272, C1465-C1474.
  • Noguchi, N., Takasawa, S., Nata, K., Tohgo, A., Kato, I., Ikehata, F., Yonekura, H. & Okamoto, H. (1997) Cyclic ADP-ribose binds to FK506-binding protein 12.6 to release Ca2+ from islet microsomes. J. Biol. Chem. 272, 3133-3136.
  • Orr, I. & Shoshan-Barmatz, V. (1996) Modulation of the skeletal muscle ryanodine receptor by endogenous phosphorylation of 160/150-kDa proteins of the sarcoplasmic reticulum. Biochim. Biophys. Acta 1283, 80-88.
  • Otsu, K., Willard, H.F., Khanna, V.K., Zorzato, F., Green, N.M. & MacLennan, D.H. (1990) Molecular cloning of cDNA encoding the Ca2+ re­lease channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum. J. Biol. Chem. 265, 13472-13483.
  • Porter Moore, C., Zhang, J.Z. & Hamilton, S.L. (1999) A role for cysteine 3635 of RYR1 in re- dox modulation and calmodulin binding. J. Biol. Chem. 274, 36831-36834.
  • Posterino, G.S. & Fryer, M.W. (1998) Mechanisms underlying phosphate-induced failure of Ca2+ release in single skinned skeletal muscle fibres of the rat. J. Physiol. (London) 512, 97-108.
  • Radermacher, M., Rao, V., Grassucci, R., Frank, J., Timerman, A.P., Fleischer, S. & Wagen­knecht, T. (1994) Cryo-electron microscopy and three-dimensional reconstruction of the calcium release channel/ryanodine receptor from skeletal muscle. J. Cell Biol. 127, 411-423.
  • Rakovic, S., Cui, Y., Iino, S., Galione, A., Ashamu, G.A., Potter, B.V. & Terrar, D.A. (1999) An an­tagonist of cADP-ribose inhibits arrhythmo- genic oscillations of intracellular Ca2+ in heart cells. J. Biol. Chem. 274, 17820-17827.
  • Remppis, A., Greten, T., Schafer, B.W., Hunziker, P., Erne, P., Katus, H.A. & Heizmann, C.W.(1996) Altered expression of the Ca2+ -binding protein S100A1 in human cardiomyopathy. Biochim. Biophys. Acta 1313, 253-257.
  • Rich, T.L., Langer, G.A. & Klassen, M.G. (1988) Two components of coupling calcium in single ventricular cell of rabbits and rats. Am. J. Physiol. 254, H937-H946.
  • Ringer, S. (1883) A further contribution regarding the influence of the different constituents of the blood on the contractions of the heart. J. Physiol. (London) 4, 29-42.
  • Rousseau, E. & Pinkos, J. (1990) pH modulates conducting and gating behaviour of single cal­cium release channels. Pflugers Arch. 415, 645-647.
  • Schafer, B.W. & Heizmann, C.W. (1996) The S100 family of EF-hand calcium-binding proteins: Functions and pathology. Trends Biochem. Sci. 21, 134-140.
  • Schneider, M.F. & Chandler, W.K. (1973) Voltage dependent charge movement of skeletal mus­cle: A possible step in excitation-contraction coupling. Nature 242, 244-246.
  • Schulz, R., Rose, J. & Heusch, G. (1994) Involve­ment of activation of ATP-dependent potas­sium channels in ischemic preconditioning in swine. Am. J. Physiol. 267, H1341-H1352.
  • Serysheva, II, Orlova, E.V., Chiu, W., Sherman, M.B., Hamilton, S.L. & van Heel, M. (1995) Electron cryomicroscopy and angular recon­stitution used to visualize the skeletal muscle calcium release channel. Nature Struct. Biol. 2, 18-24.
  • Shacklock, P.S., Wier, W.G.C. & Balke, W. (1995) Local Ca2+ transients (Ca2+ sparks) originate at transverse tubules in rat heart cells. J. Physiol. (London) 487, 601-608.
  • Sharma, C., Smith, T., Li, S., Schroepfer, Jr., G.J. & Needleman, D.H. (2000a) Inhibition of Ca2+ release channel (ryanodine receptor) activity by sphingolipid bases: Mechanism of action. Chem. Phys. Lipids 104, 1-11.
  • Sharma, M.R., Jeyakumar, L.H., Fleischer, S. & Wagenknecht, T. (2000b) Three-dimensional structure of ryanodine receptor isoform three in two conformational states as visualized by cryo-electron microscopy. J. Biol. Chem. 275, 9485-9491.
  • Sharma, M.R., Penczek, P., Grassucci, R., Xin, H.B., Fleischer, S. & Wagenknecht, T. (1998) Cryoelectron microscopy and image analysis of the cardiac ryanodine receptor. J. Biol. Chem. 273, 18429-18434.
  • Shoshan-Barmatz, V. & Ashley, R.H. (1998) The structure, function, and cellular regulation of ryanodine-sensitive Ca2+ release channels. Int. Rev. Cytol. 183, 185-270.
  • Shoshan-Barmatz, V., Hadad, N., Feng, W., Shafir, I., Orr, I., Varsanyi, M. & Heilmeyer, L.M. (1996a) VDAC/porin is present in sarco- plasmic reticulum from skeletal muscle. FEBS Lett. 386, 205-210.
  • Shoshan-Barmatz, V., Orr, I., Weil, S., Meyer, H., Varsanyi, M. & Heilmeyer, L.M. (1996b) The identification of the phosphorylated 150/ 160-kDa proteins of sarcoplasmic reticulum, their kinase and their association with the ryanodine receptor. Biochim. Biophys. Acta 1283, 89-100.
  • Sonnleitner, A., Conti, A., Bertocchini, F., Schindler, H. & Sorrentino, V. (1998) Func­tional properties of the ryanodine receptor type 3 (RyR3) Ca2+ release channel. EMBO J. 17, 2790-2798.
  • Sorrentino, V. & Volpe, P. (1993) Ryanodine recep­tors: How many, where and why? Trends Pharmacol. Sci. 14, 98-103.
  • Stern, M.D. & Lakatta, E.G. (1992) Excita­tion-contraction coupling in the heart: The state of the question. FASEBJ. 6,3092-3100.
  • Strauss, O., Mergler, S. & Wiederholt, M. (1997) Regulation of L-type calcium channels by pro­tein tyrosine kinase and protein kinase C in cultured rat and human retinal pigment epi­thelial cells. FASEB J. 11, 859-867.
  • Sukhareva, M., Morrissette, J. & Coronado, R. (1994) Mechanism of chloride-dependent re­lease of Ca2+ in the sarcoplasmic reticulum of rabbit skeletal muscle. Biophys. J. 67, 751-765.
  • Suko, J., Drobny, H. & Hellmann, G. (1999) Activa­tion and inhibition of purified skeletal muscle calcium release channel by NO donors in sin­gle channel current recordings. Biochim. Biophys. Acta 1451, 271-287.
  • Suko, J., Hellmann, G. & Drobny, H. (2000) Modu­lation of the calmodulin-induced inhibition of sarcoplasmic reticulum calcium release chan­nel (Ryanodine receptor) by sulfhydryl oxida­tion in single channel current recordings and [ 3H]Ryanodine binding. J. Membr. Biol. 174, 105-120.
  • Sun, X.H., Protasi, F., Takahashi, M., Takeshima, H., Ferguson, D.G. & Franzini-Armstrong, C. (1995) Molecular architecture of membranes involved in excitation-contraction coupling of cardiac muscle. J. Cell Biol. 129, 659-671.
  • Sutko, J.L. & Airey, J.A. (1996) Ryanodine recep­tor Ca2+ release channels: Does diversity in form equal diversity in function? Physiol. Rev. 76, 1027-1071.
  • Sutko, J.L., Airey, J.A., Welch, W. & Ruest, L. (1997) The pharmacology of ryanodine and re­lated compounds. Pharmacol. Rev. 49, 53-98.
  • Szegedi, C., Sarkozi, S., Herzog, A., Jona, I. & Varsanyi, M. (1999) Calsequestrin: More than «only» a luminal Ca2+ buffer inside the sarcoplasmic reticulum. Biochem. J. 337, 19­22.
  • Takekura, H., Nishi, M., Noda, T., Takeshima, H. & Franzini-Armstrong, C. (1995a) Abnormal junctions between surface membrane and sarcoplasmic reticulum in skeletal muscle with a mutation targeted to the ryanodine re­ceptor. Proc. Natl. Acad. Sci. U.S.A. 92, 3381-3385.
  • Takekura, H., Takeshima, H., Nishimura, S., Takahashi, M., Tanabe, T., Flockerzi, V., Hofmann, F. & Franzini-Armstrong, C. (1995b) Co-expression in CHO cells of two muscle proteins involved in excitation-contrac­tion coupling. J. Muscle Res. Cell Motil. 16, 465-480.
  • Takeshima, H., Nishimura, S., Matsumoto, T., Ishida, H., Kangawa, K., Minamino, N., Matsuo, H., Ueda, M., Hanaoka, M., Hirose, T. & Numa, S. (1989) Primary structure and ex­pression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339, 439-445.
  • Timerman, A.P., Ogunbumni, E., Freund, E., Wiederrecht, G., Marks, A.R. & Fleischer, S. (1993) The calcium release channel of sarcoplasmic reticulum is modulated by FK-506-binding protein. Dissociation and re­constitution of FKBP-12 to the calcium release channel of skeletal muscle sarcoplasmic retic- ulum. J. Biol. Chem. 268, 22992-22999.
  • Timerman, A.P., Onoue, H., Xin, H.B., Barg, S., Copello, J., Wiederrecht, G. & Fleischer, S. (1996) Selective binding of FKBP12.6 by the cardiac ryanodine receptor. J. Biol. Chem. 271, 20385-20391.
  • Tinker, A. & Williams, A.J. (1992) Divalent cation conduction in the ryanodine receptor channel of sheep cardiac muscle sarcoplasmic reticu- lum. J. Gen. Physiol. 100, 479-493.
  • Treves, S., Scutari, E., Robert, M., Groh, S., Ottolia, M., Prestipino, G., Ronjat, M. & Zorzato, F. (1997) Interaction of S100A1 with the Ca2+ release channel (ryanodine receptor) of skeletal muscle. Biochemistry 36, 11496­11503.
  • Tripathy, A., Xu, L., Mann, G. & Meissner, G. (1995) Calmodulin activation and inhibition of skeletal muscle Ca2+ release channel (ryano­dine receptor). Biophys. J. 69, 106-119.
  • Tunwell, R.E., Wickenden, C., Bertrand, B.M., Shevchenko, V.I., Walsh, M.B., Allen, P.D. & Lai, F.A. (1996) The human cardiac muscle ryanodine receptor-calcium release channel: Identification, primary structure and topologi­cal analysis. Biochem. J. 318, 477-487.
  • Uehara, A., Yasukochi, M. & Imanaga, I. (1996) Modulation of ryanodine binding to the car­diac Ca2+ release channel by arachidonic acid. J. Mol. Cell. Cardiol. 28, 43-51.
  • Wagenknecht, T., Grassucci, R., Frank, J., Saito, A., Inui, M. & Fleischer, S. (1989) Three-di­mensional architecture of the calcium chan­nel/foot structure of sarcoplasmic reticulum. Nature 338, 167-170.
  • Wagenknecht, T., Radermacher, M., Grassucci, R., Berkowitz, J., Xin, H.B. & Fleischer, S. (1997) Locations of calmodulin and FK506-binding protein on the three- dimensional architecture of the skeletal muscle ryanodine receptor. J. Biol. Chem. 272, 32463-32471.
  • Wang, W., Cleemann, L., Jones, L.R. & Morad, M. (2000) Modulation of focal and global Ca2+ re­lease in calsequestrin- overexpressing mouse cardiomyocytes. J. Physiol. (London) 524, 399-414.
  • Wrzosek, A. (1999) Main systems involved in cal­cium regulation in cardiac muscle cells and their functional relationship. Pol. J. Phar­macol. 51, 187-200.
  • Xia, R.H., Cheng, X.Y., Wang, H., Chen, K.Y., Wei, Q.Q., Zhang, X.H. & Zhu, P.H. (2000) Biphasic modulation of ryanodine binding to sarco- plasmic reticulum vesicles of skeletal muscle by Zn2+ ions. Biochem. J. 345, 279-286.
  • Xiang, J.Z. & Kentish, J.C. (1995) Effects of inor­ganic phosphate and ADP on calcium handling by the sarcoplasmic reticulum in rat skinned cardiac muscles. Cardiovasc. Res. 29, 391­400.
  • Xin, H.B., Rogers, K., Qi, Y., Kanematsu, T. & Fleischer, S. (1999) Three amino acid residues determine selective binding of FK506-binding protein 12.6 to the cardiac ryanodine receptor. J. Biol. Chem. 274, 15315-15319.
  • Xu, L., Eu, J.P., Meissner, G. & Stamler, J.S. (1998) Activation of the cardiac calcium re­lease channel (ryanodine receptor) by poly-S- nitrosylation. Science 279, 234-237.
  • Xu, L., Mann, G. & Meissner, G. (1996) Regulation of cardiac Ca2+ release channel (ryanodine re­ceptor) by Ca2+, H+, Mg2+, and adenine nucleo- tides under normal and simulated ischemic conditions. Circ. Res. 79, 1100-1109.
  • Yamazawa, T., Takeshima, H., Shimuta, M. & Iino, M. (1997) A region of the ryanodine receptor critical for excitation-contraction coupling in skeletal muscle. J. Biol. Chem. 272, 8161­8164.
  • Zable, A.C., Favero, T.G. & Abramson, J.J. (1997) Glutathione modulates ryanodine receptor from skeletal muscle sarcoplasmic reticulum. Evidence for redox regulation of the Ca2+ re­lease mechanism. J. Biol. Chem. 272, 7069­7077.
  • Zamparelli, C., Ilari, A., Verzili, D., Giangiacomo, L., Colotti, G., Pascarella, S. & Chiancone, E. (2000) Structure-function relationships in sorcin, a member of the penta EF- hand family. Interaction of sorcin fragments with the ryanodine receptor and an Escherichia coli model system. Biochemistry 39, 658-666.
  • Zarka, A. & Shoshan-Barmatz, V. (1993) Charac­terization and photoaffinity labeling of the ATP binding site of the ryanodine receptor from skeletal muscle. Eur. J. Biochem. 213, 147-154.
  • Zhang, J.Z., Wu, Y., Williams, B.Y., Rodney, G., Mandel, F., Strasburg, G.M. & Hamilton, S.L. (1999) Oxidation of the skeletal muscle Ca2+ release channel alters calmodulin binding. Am. J. Physiol. 276, C46-C53.
  • Zhu, X., Gurrola, G., Jiang, M.T., Walker, J.W. & Valdivia, H.H. (1999) Conversion of an inac­tive cardiac dihydropyridine receptor II-III loop segment into forms that activate skeletal ryanodine receptors. FEBS Lett. 450, 221­226.
  • Zorzato, F., Fujii, J., Otsu, K., Phillips, M., Green, N.M., Lai, F.A., Meissner, G. & MacLennan, D.H. (1990) Molecular cloning of cDNA encod­ing human and rabbit forms of the Ca2+ re­lease channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 265, 2244-2256.
  • Zot, A.S. & Potter, J.D. (1987) Structural aspects of troponin-tropomyosin regulation of skeletal muscle contraction. Annu. Rev. Biophys. Biophys. Chem. 16, 535-559.
  • Zucchi, R. & Ronca-Testoni, S. (1997) The sarco- plasmic reticulum Ca2+ channel/ryanodine re­ceptor: Modulation by endogenous effectors, drugs and disease states. Pharmacol. Rev. 49, 1-51.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-68992651-ae10-4805-806f-4c8f4d942bc0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.