PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 51 | 2 |

Tytuł artykułu

Dynamics of neutral lipid storage in yeast

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Since energy storage is a basic metabolic process, the synthesis of neutral lipids oc­curs in all kingdoms of life. The yeast, Saccharomyces cerevisiae, widely accepted as a model eukaryotic cell, contains two classes of neutral lipids, namely steryl esters and triacylglycerols. Triacylglycerols are synthesized through two pathways gov­erned by the acyl-CoA diacylglycerol acyltransferase Dga1p and the phospholipid diacylglycerol acyltransferase Lro1p, respectively. Steryl esters are formed by the two steryl ester synthases Are1p and Are2p, two enzymes with overlapping function which also catalyze triacylglycerol formation, although to a minor extent. Storage of neutral lipids is tightly linked to the biogenesis of so called lipid particles. The role of this compartment in lipid homeostasis and its interplay with other organelles in­volved in neutral lipid dynamics, especially the endoplasmic reticulum and the plasma membrane, are subject of current investigations. In contrast to neutral lipid formation, mobilization of triacylglycerols and steryl esters in yeast are less characterized at the molecular level. Only recently, the triacylglycerol lipase Tgl3p was identified as the first yeast enzyme of this kind by function. Genes and gene products governing steryl ester mobilization still await identification. Besides biochemical properties of enzymes involved in yeast neutral lipid synthesis and degradation, regulatory aspects of these pathways and cell biological consequences of neutral lipid depletion will be discussed in this minireview.

Wydawca

-

Rocznik

Tom

51

Numer

2

Opis fizyczny

p.323-347,fig.,ref.

Twórcy

autor
  • Technische Universitat Graz, Petersgasse 12-2, A-8010 Graz, Austria
autor

Bibliografia

  • Abraham PR, Mulder A, Van't Riet J, Planta RJ, Raue HA. (1992) Molecular cloning and physical analysis of an 8.2 kb segment of chromosome XI of Saccharomyces cerevisiae reveals five tightly linked genes. Yeast.; 8: 227-38.
  • Arthington-Skaggs BA, Crowell DN, Yang H, Sturley SL, Bard M. (1996) Positive and negative regulation of a sterol biosynthetic gene (ERG3) in the post-squalene portion of the yeast ergosterol pathway. FEBS Lett.; 392: 161-5.
  • Athenstaedt K, Daum G. (1997) Biosynthesis of phosphatidic acid in lipid particles and endoplasmic reticulum of Saccharomyces cerevisiae. J Bacteriol.; 179: 7611-6.
  • Athenstaedt K, Daum G. (1999) Phosphatidic acid, a key intermediate in lipid metabolism. Eur J Biochem.; 266: 1-16.
  • Athenstaedt K, Daum G. (2000) 1-Acyldihydroxyacetone-phosphate reductase (Ayr1p) of the yeast Saccharomyces cerevisiae encoded by the open reading frame YIL124w is a major component of lipid particles. J Biol Chem.; 275: 235-40.
  • Athenstaedt K, Daum G. (2003) YMR313c/TGL3 encodes a novel triacylglycerol lipase located in lipid particles of Saccharomyces cerevisiae. J Biol Chem. ; 278: 23317-23.
  • Athenstaedt K, Weys S, Paltauf F, Daum G. (1999a) Redundant systems of phosphatidic acid biosynthesis via acylation of glycerol-3-phosphate or dihydroxyacetone phosphate in the yeast Saccharomyces cerevisiae. J Bacteriol.; 181: 1458-63.
  • Athenstaedt K, Zweytick D, Jandrositz A, Kohlwein SD, Daum G. (1999b) Identification and characterization of major lipid particle proteins of the yeast Saccharomyces cerevisiae. J Bacteriol.; 181: 6441-8.
  • Bard M, Lees ND, Burrows LS, Kleinhans FW. (1978) Differences in crystal violet uptake and cation induced death among yeast sterol mutants. J Bacteriol.; 135: 1146-8.
  • Baudry K, Swain E, Rahier A, Germann M, Batta A, Rondet S, Mandala S, Henry K, Tint GS, Edlind T, Kurtz M, Nickels JT Jr. (2001) The effect of the erg26-1 mutation on the regulation of lipid metabolism in Saccharomyces cerevisiae. J Biol Chem.; 276: 12702-11.
  • Bouvier-Nave P, Benveniste P, Noiriel A, Schaller H. (2000) Expression in yeast of an acyl-CoA:diaclyglycerol acyltransferase cDNA from Caenorhabditis elegans. Biochem Soc Trans. ; 28: 692-5.
  • Brasaemle DL, Rubin B, Harten IA, Gruia-Gray J, Kimmel AR, Londos C. (2000) Perilipin A increases triacylglycerol storage by decreasing the rate of triacylglycerol hydrolysis. J Biol Chem.; 275: 38486-93.
  • Brown DA. (2001) Lipid droplets: Proteins floating on a pool of fat. Curr Biol.; 11: 446-9.
  • Buhman KF, Accad M, Farese RV Jr. (2000) Mammalian acyl-CoA:cholesterol acyltransferases. Biochim Biophys Acta.; 1529: 142-54.
  • Buhman KF, Chen HC, Farese RV Jr. (2001) The enzymes of neutral lipid synthesis. J Biol Chem. ; 276: 40369-72.
  • Carman GM, Henry SA. (1999) Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes. Prog Lipid Res. ; 38: 361-99.
  • Carman GM, Zeimetz GM. (1996) Regulation of phospholipid biosynthesis in the yeast Saccharomyces cerevisiae. J Biol Chem.; 271: 13293-6.
  • Cases S, Smith SJ, Zheng YW, Myers HM, Lear SR, Sande E, Novak S, Collins C, Welch CB, Lusis AJ, Erickson SK, Farese RV Jr. (1998) Identification of a gene encoding an acyl-CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc Natl Acad Sci USA.; 95: 13018-23.
  • Cases S, Stone SJ, Zhou P, Yen E, Tow B, Lardizabal KD, Voelker T, Farese RV Jr. (2001) Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members. J Biol Chem.; 276: 38870-6.
  • Chang CC, Huh HY, Cadigan KM, Chang TY. (1993) Molecular cloning and functional expression of human acyl coenzyme A:cholesterol acyltransferase cDNA in mutant chinese hamster ovary cells. J Biol Chem.; 268: 20747-55.
  • Cheng D, Liu J, Chang CCY, Chang TY. (2004) Mammalian ACAT and DGAT2 gene families. In Topics in Current Genetics, Vol. 6: Lipid Metabolism and Membrane Biogenesis.; Daum G. ed, pp 241-65. Springer-Verlag, Berlin, Heidelberg.
  • Christiansen K. (1978) Triacylglycerol synthesis in lipid particles from baker's yeast (Saccharomyces cerevisiae). Biochim Biophys Acta.; 530: 78-90.
  • Christiansen K. (1979) Utilization of endogenous diacylglycerol for the synthesis of triacylglycerol, phosphatidylcholine and phosphatidylethanolamine by lipid particles from baker's yeast (Saccharomyces cerevisiae). Biochim Biophys Acta.; 574: 448-60.
  • Clausen MK, Christiansen K, Jensen PK, Behnke O. (1974) Isolation of lipid particles from baker's yeast. FEBSLett.; 43: 176-9.
  • Cobon GS, Haslam JM. (1973) The effect of altered membrane sterol composition on the temperature dependence of yeast mitochondrial ATPase. Biochem Biophys Res Commun.; 52: 320-6.
  • Coleman RA, Lee DP. (2004) Enzymes of triacylglycerol synthesis and their regulation. Prog Lipid Res. ; 43: 134-76.
  • Dahlqvist A, Stahl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S. (2000) Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci USA.; 97: 6487-92.
  • Daum G, Paltauf F. (1980) Triacylglycerols as fatty acid donors for membrane phospholipid biosynthesis in yeast. Monatsh Chem.; 111: 355-63.
  • Daum G, Lees ND, Bard M, Dickson R. (1998) Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast.; 14: 1471-510.
  • Daum G, Tuller G, Nemec T, Hrastnik C, Balliano G, Cattel L, Milla P, Rocco F, Conzelmann A, Vionnet C, Kelly DE, Kelly S, Schweizer E, Schuller HJ, Hojad U, Greiner E, Finger K. (1999) Systematic analysis of yeast strains with possible defects in lipid metabolism. Yeast.; 15: 601-14.
  • Duport C, Schoepp B, Chatelain E, Spagnoli R, Dumas B, Pompon D. (2003) Critical role of the plasma membrane for expression of mammalian mitochondrial side chain cleavage activity in yeast. Eur J Biochem.; 270: 1502-14.
  • Ferreira T, Regnacq M, Alimardani P, Moreau-Vauzelle C, Berges T. (2004) Lipid dynamics in yeast under haem-induced unsaturated fatty acid and/or sterol depletion. Biochem J.; 378: 899-908.
  • Frandsen GI, Mundy J, Tzen JT. (2001) Oil bodies and their associated proteins, oleosin and caleosin. Physiol Plant.; 112: 301-7.
  • Gangar A, Karande AA, Rajasekharan R. (2001a) Isolation and localization of a cytosolic 10S triacylglycerol biosynthetic multienzyme complex from oleaginous yeast. J Biol Chem.; 276: 10290-8.
  • Gangar A, Karande AA, Rajasekharan R. (2001b) Purification and characterization of acyl-acyl carrier protein synthetase from oleaginous yeast and its role in triacylglycerol biosynthesis. Biochem J.; 360: 471-9.
  • Gangar A, Raychaudhuri S, Rajasekharan R. (2002) Alteration in the cytosolic triacylglycerol biosynthetic machinery leads to decreased cell growth and triacylglycerol synthesis in oleaginous yeast. Biochem J.; 365: 577-89.
  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO. (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell.; 11: 4241-57.
  • Gibbons GF, Islam K, Pease RJ. (2000) Mobilisation of triacylglycerol stores. Biochim Biophys Acta.; 1483: 37-57.
  • Goni FM, Alonso A. (1999) Structure and functional properties of diacylglycerols in membranes. Prog Lipid Res.; 38: 1-48.
  • Guo Z, Cromley D, Billheimer JT, Sturley SL. (2001) Identification of potential substrate-binding sites in yeast and human acyl-CoA sterol acyltransferases by mutagenesis of conserved sequences. J Lipid Res. ; 42: 1282-91.
  • Haemmerle G, Zimmermann R, Zechner R. (2003) Letting lipids go: hormone-sensitive lipase. Curr Opin Lipidol.; 14: 289-97.
  • Hobbs DH, Lu C, Hills MJ. (1999) Cloning of a cDNA encoding diacylglycerol acyltransferase from Arabidopsis thaliana and its functional expression. FEBSLett.; 452: 145-9.
  • Holm C, Osterlund T, Laurell H, Contreras JA. (2000) Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Annu RevNu.tr.; 20: 365-93.
  • Huang AH. (1992) Oil bodies and oleosins in seeds. Annu Rev Plant Physiol Plant Mol Biol.; 43: 177-200. Huang AH. (1993) Lipases. In Lipid Metabolism in Plants. Moore TS. ed, pp 473-502. CRC Press, Boca Raton. Huang AH. (1996) Oleosins and oil bodies in seeds and other organs. Plant Physiol.; 110: 1055-61.
  • Hunkova Z, Fencl Z. (1977) Toxic effects of fatty acids on yeast cells: dependence of inhibitory effects on fatty acid concentration. Biotechnol Bioeng.; 19: 1623-41.
  • Hunkova Z, Fencl Z. (1978) Toxic effects of fatty acids on yeast cells: possible mechanisms of action. Biotechnol Bioeng.; 20: 1235-47.
  • Jensen-Pergakes K, Guo Z, Giattina M, Sturley SL, Bard M. (2001) Transcriptional regulation of the two sterol esterification genes in the yeast Saccharomyces cerevisiae. J Bacterid; 183: 4950-7.
  • Keesler GA, Casey WM, Parks LW. (1992) Stimulation by heme of steryl ester synthase and aerobic sterol exclusion in the yeast Saccharomyces cerevisiae. Arch Biochem Biophys.; 296: 474-81.
  • Kellner-Weibel G, Geng YJ, Rothblat GH. (1999) Cytotoxic cholesterol is generated by the hydrolysis of cytoplasmic cholesteryl ester and transported to the plasma membrane. Atherosclerosis.; 146: 309-19.
  • Kent C. (1995) Eukaryotic phospholipid biosynthesis. Annu Rev Biochem.; 64: 315-43.
  • Kleinhans FW, Lees ND, Bard M, Haak RA, Woods RA. (1979) ESR determination of membrane permeability in a yeast sterol mutant. Chem Phys Lipids.; 23: 143-54.
  • Kraemer FB, Shen WJ. (2002) Hormone-sensitive lipase: control of intracellular tri-(di-) acylglycerol and cholesteryl ester hydrolysis. J Lipid Res.; 43: 1585-94.
  • Kwast KE, Lai LC, Menda N, James DT, Aref S, Burke PV. (2002) Genomic analyses of anaerobically induced genes in Saccharomyces cerevisiae: functional roles of Rox1 and other factors in mediating the anoxic response. J Bacteriol. ; 184: 250-65.
  • Lacey DJ, Beaudoin F, Dempsey CE, Shewry PR, Napier JA. (1999) The accumulation of triacylglycerols within the endoplasmic reticulum of developing seeds of Helianthus annuus. Plant J.; 17: 397-405.
  • Lardizabal KD, Mai JT, Wagner NW, Wyrick A, Voelker T, Hawkins DJ. (2001) DGAT2 is a new diacylglycerol acyltransferase gene family: purification, cloning and expression in insect cells of two polypeptides from Mortierella ramanniana with diacylglycerol acyltransferase activity. J Biol Chem.; 276: 38862-9.
  • Leber R, Zinser E, Zellnig G, Paltauf F, Daum G. (1994) Characterization of lipid particles of the yeast Saccharomyces cerevisiae. Yeast.; 10: 1421-8.
  • Leber R, Zinser E, Hrastnik C, Paltauf F, Daum G. (1995) Export of steryl esters from lipid particles and release of free sterols in the yeast, Saccharomyces cerevisiae. Biochim Biophys Acta.; 1234: 119-26.
  • Leber R, Landl K, Zinser E, Ahorn H, Spok A, Kohlwein SD, Turnowsky F, Daum G. (1998) Dual localization of squalene epoxidase, Erg1p, in yeast reflects a relationship between the endoplasmic reticulum and lipid particles. Mol Biol Cell.; 9: 375-86.
  • Lees ND, Bard M, Kemple MD, Haak RA, Kleinhans FW. (1979) ESR determination of membrane order parameter in yeast sterol mutants. Biochim Biophys Acta.; 553: 469-75.
  • Lehner R, Kuksis A. (1996) Biosynthesis of triacylglycerols. Prog Lipid Res.; 35: 169-201.
  • Lewis TA, Rodriguez RJ, Parks LW. (1987) Relationship between intracellular sterol content and sterol esterification and hydrolysis in Saccharomyces cerevisiae. Biochim Biophys Acta.; 921: 205-12.
  • Londos C, Brasaemle DL, Gruia-Gray J, Servetnick DA, Schultz CJ, Levin DM, Kimmel AR. (1995) Perilipin: unique proteins associated with intracellular neutral lipid droplets in adipocytes and steroidogenic cells. Biochem Soc Trans.; 23: 611-5.
  • Londos C, Gruia-Gray J, Brasaemle DL, Rondinone CM, Takeda T, Dwyer NK, Barber T, Kimmel AR, Blanchette-Mackie EJ. (1996) Perilipin: possible roles in structure and metabolism of intracellular neutral lipids in adipocytes and steroidogenic cells. Int J Obes Relat Metab Disord.; 20: 97-101.
  • Londos C, Brasaemle DL, Schultz ChJ, Segrest JP, Kimmel AR. (1999) Perilipins, ADRP, and other proteins that associate with intracellular neutral lipid droplets in animal cells. Semin Cell DevBiol.; 10: 51-8.
  • Malcorps P, Dufour JP. (1992) Short-chain and medium-chain aliphatic-ester synthesis in Saccharomyces cerevisiae. Eur J Biochem.; 210: 1015-22.
  • Mason AB, Dufour JP. (2000) Alcohol acetyltransferases and the significance of ester synthesis in yeast. Yeast.; 16: 1287-98.
  • Mead JR, Irvine SA, Ramji DP. (2002) Lipoprotein lipase: structure, function, regulation, and role in disease. J Mol Med.; 80: 753-69.
  • Milla P, Athenstaedt K, Viola F, Oliaro-Bosso S, Kohlwein SD, Daum G, Balliano G. (2002) Yeast oxidosqualene cyclase (Erg7p) is a major component of lipid particles. J Biol Chem.; 277: 2406-12.
  • Mukherjee KD, Hills MJ. (1994) Lipases from plants. In Lipases: their Structure, Biochemistry and Application. Wodley P, Petersen SB. eds, pp 49-75. Cambridge University Press, Cambridge.
  • Mullner H, Zweytick D, Leber R, Turnowsky F, Daum G. (2004) Targeting of proteins involved in sterol biosynthesis to lipid particles of the yeast Saccharomyces cerevisiae. Biochim Biophys Acta.; 1663: 9-13.
  • Murphy DJ, Vance J. (1999) Mechanisms of lipid body formation. Trends Biochem Sci.; 24: 109-15.
  • Neri LM, Borgatti P, Capitani S, Martelli AM. (2002) Protein kinase C isoforms and lipid second messengers: a critical nuclear partnership? Histol Histopathol.; 17: 1311-6.
  • Neugnot V, Moulin G, Dubreucq E, Bigey F. (2002) The lipase/acyltransferase from Candida parapsilosis: molecular cloning and characterization of purified recombinant enzymes. Eur J Biochem.; 269: 1734-45.
  • Oelkers P, Behari A, Cromley D, Billheimer JT, Sturley SL. (1998) Characterization of two human genes encoding acyl coenzyme A:cholesterol acyltransferase-related enzymes. J Biol Chem.; 273: 26765-71.
  • Oelkers P, Tinkelenberg AH, Erdeniz N, Cromley D, Billheimer JT, Sturley SL. (2000) A lecithin cholesterol acyltransferase-like gene mediates diacylglycerol esterification in yeast. J Biol Chem. ; 275: 15609-12.
  • Oelkers P, Cromley D, Padamsee M, Billheimer JT, Sturley SL. (2002) The DGA1 gene determines a second triglyceride synthetic pathway in yeast. J Biol Chem.; 277: 8877-81.
  • Oelkers PM, Sturley SL. (2004) Mechanisms and mediators of neutral lipid biosynthesis in eukaryotic cells. In Topics in Current Genetics, Vol. 6: Lipid Metabolism and Membrane Biogenesis. Daum G. ed, pp 289-311. Springer-Verlag, Berlin, Heidelberg.
  • Rodriguez RJ, Low C, Bottema CDK, Parks LW. (1985) Multiple functions for sterols in Saccharomyces cerevisiae. Biochim Biophys Acta.; 837: 336-43.
  • Routaboul JM, Benning C, Bechtold N, Caboche M, Lepiniec L. (1999) The TAG1 locus of Arabidopsis encodes for a diacylglycerol aclytransferase. Plant Physiol Biochem.; 37: 831-40.
  • Sandager L, Dahlqvist A, Banas A, Stahl U, Lenman M, Gustavsson M, Stymne S. (2000) An acyl-CoA:cholesterol acyltransferase (ACAT)-related gene is involved in the accumulation of triacylglycerols in Saccharomyces cerevisiae. Biochem Soc Trans.; 28: 700-2.
  • Sandager L, Gustavsson M, Stahl U, Dahlqvist A, Wiberg E, Banas A, Lenman M, Ronne H, Stymne S. (2002) Storage lipid synthesis is non-essential in yeast. J Biol Chem.; 277: 6478-82.
  • Schaffner G, Matile P. (1981) Structure and composition of baker's yeast lipid globules. Biochem Physiol Pflanzen.; 176: 659-66.
  • Schousboe I. (1976a) Properties of triacylglycerol lipase in a mitochondrial fraction from baker's yeast (Saccharomyces cerevisiae). Biochim Biophys Acta.; 450: 165-74.
  • Schousboe I. (1976b) Triacylglycerol lipase activity in baker's yeast (Saccharomyces cerevisiae). Biochim Biophys Acta.; 424: 366-75.
  • Sorger D, Daum G. (2002) Synthesis of triacylglycerols by the acyl-coenzyme A:diacyl-glycerol acyltransferase Dga1p in lipid particles of the yeast Saccharomyces cerevisiae. J Bacteriol. ; 184: 519-24.
  • Sorger D, Daum G. (2003) Triacylglycerol biosynthesis in yeast. Appl Microbiol Biotechnol.; 61: 289-99.
  • Swain E, Stukey J, McDonough V, Germann M, Liu Y, Sturley SL, Nickels JT Jr. (2002) Yeast cells lacking the ARV1 gene harbor defects in sphingolipid metabolism. Complementation by human ARV1. J Biol Chem.; 277: 36152-60.
  • Sztalryd C, Xu G, Dorward H, Tansey JT, Contreras JA, Kimmel AR, Londos C. (2003) Perilipin A is essential for the translocation of hormone-sensitive lipase during lipolytic activation. J Cell Biol.; 161: 1093-103.
  • Tabas I, Weiland DA, Tall AR. (1986) Inhibition of acyl coenzyme A:cholesterol acyl transferase in J774 macrophages enhances down-regulation of the low density lipoprotein receptor and 3-hydroxy-3-methylglutaryl-coenzyme A reductase and prevents low density lipoprotein-induced cholesterol accumulation. J Biol Chem. ; 261: 3147-55.
  • Taketani S, Osumi T, Katsuki H. (1978) Characterization of sterol-ester hydrolase in Saccharomyces cerevisiae. Biochim Biophys Acta.; 525: 87-92.
  • Taylor FR, Parks LW. (1978) Metabolic interconversion of free sterols and steryl esters in Saccharomyces cerevisiae. J Bacteriol.; 136: 531-7.
  • Taylor FR, Parks LW. (1981) An assessment of the specificity of sterol uptake and esterification in Saccharomyces cerevisiae. J Biol Chem. ; 256: 13048-54.
  • ter Linde JJ, Liang H, Davis RW, Steensma HY, van Dijken JP, Pronk JT. (1999) Genome-wide transcriptional analysis of aerobic and anaerobic chemostat cultures of Saccharomyces cerevisiae. J Bacteriol.; 181: 7409-13.
  • Teter SA, Eggerton KP, Scott SV, Kim J, Fischer AM, Klionsky DJ. (2001) Degradation of lipid vesicles in the yeast vacuole requires function of Cvt17, a putative lipase. J Biol Chem. ; 276: 2083-7.
  • Tinkelenberg AH, Liu Y, Alcantara F, Khan S, Guo Z, Bard M, Sturley SL. (2000) Mutations in yeast ARV1 alter intracellular sterol distribution and are complemented by human ARV1. J Biol Chem.; 275: 40667-70.
  • Valachovic M, Hronska L, Hapala I. (2001) Anaerobiosis induces complex changes in sterol esterification pattern in the yeast Saccharomyces cerevisiae. FEMS Microbiol Lett.; 197: 41-5.
  • Valachovic M, Klobucnikova V, Griac P, Hapala I. (2002) Heme-regulated expression of two yeast acyl-CoA:sterol acyltransferases is involved in the specific response of sterol esterification to anaerobiosis. FEMS Microbiol Lett.; 206: 121-5.
  • van Heusden GP, Nebohacova M, Overbeeke TL, Steensma HY. (1998) The Saccharomyces cerevisiae TGL2 gene encodes a protein with lipolytic activity and can complement an Escherichia coli diacylglycerol kinase disruptant. Yeast.; 14: 225-32.
  • Vance JE. (1998) Eukaryotic lipid-biosynthetic enzymes: the same but not the same. Trends Biochem Sci.; 23: 423-8.
  • Voelker DR. (2000) Interorganelle transport of aminoglycerophospholipids. Biochim Biophys Acta.; 1486: 97-107.
  • Wagner S, Paltauf F. (1994) Generation of glycerophospholipid molecular species in the yeast Saccharomyces cerevisiae. Fatty acid pattern of phospholipid classes and selective acyl turnover at sn-1 and sn-2 positions. Yeast.; 10: 1429-37.
  • Warner GJ, Stoudt G, Bamberger M, Johnson WJ, Rothblat GH. (1995) Cell toxicity induced by inhibition of acyl coenzyme A:cholesterol acyltransferase and accumulation of unesterified cholesterol. J Biol Chem.; 270: 5772-8.
  • Wiggins D, Gibbons GF. (1992) The lipolysis/esterification cycle of hepatic triacylglycerol. Its role in the secretion of very- low-density lipoprotein and its response to hormones and sulphonylureas. Biochem J.; 284: 457-62.
  • Yang LY, Kuksis A, Myher JJ, Steiner G. (1995) Origin of triacylglycerol moiety of plasma very low density lipoproteins in the rat: structural studies. J Lipid Res. ; 36: 125-36.
  • Yang H, Bard M, Bruner DA, Gleeson A, Deckelbaum RJ, Aljinovic G, Pohl TM, Rothstein R, Sturley SL. (1996) Sterol esterification in yeast: a two-gene process. Science.; 272: 1353-6.
  • Yeaman SJ. (2004) Hormone-sensitive lipase — new roles for an old enzyme. Biochem J.; 379: 11-22.
  • Yin W, Tsutsumi K. (2003) Lipoprotein lipase activator NO-1886. Cardiovasc Drug Rev.; 21: 133-42.
  • Yu C, Kennedy NJ, Chang CCY, Rothblatt J. (1996) Molecular cloning and characterization of two isoforms of Saccharomyces cerevisiae acyl-CoA:sterol acyltransferase. J Biol Chem. ; 271: 24157-63.
  • Zhang Q, Chieu HK, Low CP, Zhang S, Heng CK, Yang H. (2003) Schizosaccharomyces pombe cells deficient in triacylglycerols synthesis undergo apoptosis upon entry into the stationary phase. J Biol Chem.; 278: 47145-55.
  • Zinser E, Paltauf F, Daum G. (1993) Sterol composition of yeast organelle membranes and subcellular distribution of enzymes involved in sterol metabolism. J Bacteriol.; 175: 2853-8.
  • Zou J, Wei Y, Jako C, Kumar A, Selvaraj G, Taylor DC. (1999) The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene. Plant J.; 19: 645-53.
  • Zweytick D, Athenstaedt K, Daum G. (2000a) Intracellular lipid particles of eukaryotic cells. Biochim Biophys Acta.; 1469: 101-20.
  • Zweytick D, Leitner E, Kohlwein SD, Yu C, Rothblatt J, Daum G. (2000b) Contribution of Arelp and Are2p to steryl estersynthesis in the yeast Saccharomyces cerevisiae. Eur J Biochem.; 267: 1075-82.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-68679d70-2aba-422c-9f33-c37cfa10afdc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.