PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1999 | 46 | 4 |

Tytuł artykułu

Extraribosomal function of the acidic ribosomal P1-protein YP1alpha from Saccharomyces cerevisiae

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The yeast acidic ribosomal P-proteins YP1α, YP1β, YP2a and YP2b were studied for a possible transactivation potential beside their ribosomal function. The fusions of P-proteins with the GAL4 DNA-binding domain were assayed toward their transcriptional activity with the aid of reporter genes in yeast. Two of the P-proteins, YP1α and YP1β, exhibited transactivation potential, however, only YP1α can be regarded as a potent transactivator. This protein was able to transactivate a reporter gene associated with two distinct promoter systems, GAL1 or CYC1. Additionally, truncated proteins of YP1α and YP1β were analyzed. The N-terminal part of YP1α fused to GAL4-BD showed transactivation potential but the C-terminal part did not. Our results suggest a putative extraribosomal function for these ribosomal proteins which consequently may be classified as "moonlighting" proteins.

Wydawca

-

Rocznik

Tom

46

Numer

4

Opis fizyczny

p.901-910,fig.

Twórcy

  • Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
autor

Bibliografia

  • Ballesta, J.P.G., Remacha, M., Naranda, T., Santos, C., Bermejo, B., Jimenez-Diaz, A. & Ortiz-Reyes, B. (1993) in Protein Synthesis and Targeting in Yeast (Brown, A.J.P., Tuite, M.E. & McCarthy, J.E.G., eds.) pp. 67-80, Springer- Verlag, Berlin.
  • Ballesta, J.P.G. & Remacha, M. (1996) The large ri­bosomal subunit stalk as a regulatory element of the eukaryotic translational machinery. Prog. Nucleic Acid Res. Mol Biol 55,157-193.
  • Bartel, P.L., Chien, C.-T., Sternglanz, R. & Fields, S. (1993a) Elimination of false positives that arise in using the two-hybrid system. Bio- Techniques 14, 920-924.
  • Bartel, P.L., Chien, C.-T., Sternglanz, R. & Fields, S. (1993b) in Cellular Interaction in Develop­ment: A Practical Approach (Hartley, D.A., ed.) pp. 153-179, Oxford University Press.
  • Chan, Y.L., Suzuki, K., Olivera, J. & Wool, I.G. (1993) Zinc finger-like motifs in rat ribosomal proteins S27&S29. Nucleic Acids Res. 21, 649-655.
  • Chan, Y.L., Olvera, J., Gluck, A. & Wool, I.G. (1994) A leucine zipper-like motif a basic re- gion-leucine zipper-like element in rat ribo­somal protein Ll3a. Identification of the tum-transplantation antigen P198. J. Biol. Chem. 269, 5589-5594.
  • Cho, H.S., Liu, C.W., Damberger, F.F., Pelton, J.G., Nelson, H.C.M. & Wemmer, D.E. (1996) Yeast heat shock transcription factor N-ter- minal activation domains are unstructured as probed by heteronuclear NMR spectroscopy. Protein Sci. 5, 262-269.
  • Cress, W.D. & Triezenbergm, S.J. (1991) Critical structural elements of the VP 16 transcrip­tional activation domain. Science251,87-90.
  • Curran, T. & Franza, B.R., Jr. (1988) Fos and Jun: the AP-1 connection. Cell 55, 395-397.
  • Dahlman-Wright, K., Baumann, H., McEvwan, I.J., Almlof, T., Wright, A.P.H., Gustafsson, J.-A. & Hard, T. (1995) Structural character­ization of a minimal functional transacti­vation domain from the human glucocorticoid receptor. Proc. Natl. Acad. Sci. U.S.A. 92, 1699-1703.
  • Donaldson, L. & Capone, J.P. (1992) Purification and characterization of the carhoxyl-terminal transactivation domain of Vmw65 from her­pes simplex virus type 1. J. BioL Chem. 267, 1411-1414.
  • Feilotter, H.E., Hannon, G.J., Ruddel, C.J. & Beach, D. (1994) Construction of an improved host strain for two hybrid screening. Nucleic Acids Res. 22. 1502-1503.
  • Frolov, M.V. & Birchler, J.A. (1998) Mutation in P0, a dual function ribosomal protein/apu- rinic/apyrimidinic endonuclease, modifies gene expression and position effect variega­tion in Drosophila. Genetics 150, 1487-1495.
  • Jeffery, C.J. (1999) Moonlighting proteins. Trends Biochem. ScL 24, 8-11.
  • Jose, M.P., Santana-Roman, H., Remacha, M., Ballesta, J.P.G. & Zinker, S. (1995) Eukaryotic acidic phosphoproteins interact with the ribo- some through their amino-terminal domain. Biochemistry 34, 7941-7948.
  • Liljas, A. (1991) Comparative biochemistry and biophysics of ribosomal proteins. Int. Rev. Cytol 124, 103-136.
  • Ma, J. & Ptashne, M. (1987) A new class of yeast transcriptional activators. Cell 51, 113-119.
  • Mager, W.H., Planta, R.J., Ballesta, J.G., Lee, J.C., Suzuki, K, Warner, J.R. & Woolford, J. (1997) A new nomenclature for the cytoplas­mic ribosomal proteins of Saccharomyces cerevisiae. Nucleic Acids Res. 25, 4872-4875.
  • Mannervik, M., Nibu, Y., Zhang, H. & Levine, M. (1999) Transcriptional coregulators in devel­opment. Science 284, 606-609.
  • Monteiro, A.N.A., Augus, A. & Hanafusa, H. (1996) Evidence for a transcriptional activa­tion function of BRCA1 C-terminal region. Proc. Natl Acad. ScL U.S.A. 93, 13595- 13599.
  • Miller, J.H. (1972) Experiments in Molecular Genet­ics. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, NY.
  • Miteui, K. & Teurugi, K. (1988) cDNA and deduced amino acid sequence of acidic ribosomal pro­tein A1 from Saccharomyces cerevisiae. Nucleic Acids Res. 16, 3574-3575.
  • Newton, C.H., Shimmin, L.C., Yee, J. & Dennis, P.P. (1990) A family of genes encode the multi­ple forms of the Saccharomyces cerevisiae ribo­somal proteins equivalent to the Escherichia coli L12 protein and a single form of the LlO-equivalent ribosomal protein. J. BacterioL 172, 579-588.
  • Remacha, M., Saenz-Robles, M.T., Vilella, M.D. & Ballesta, J.P.G. (1988) Independent genes cod­ing for three acidic proteins of the large ribo­somal subunit from Saccharomyces cerevisiae. J. BioL Chem. 263, 9094-9101.
  • Ransone, L.J. & Verma, I.M. (1990) Nuclear proto-oncogenes fos and jun. Annu. Rev. Cell Biol. 6, 539-557.
  • Rice, P.A. & Steitz, T.A. (1989) Ribosomal protein L7/L12 has a helix-turn-helix motif similar to that found in DNA-binding regulatory pro­teins. Nucleic Acids Res. 17, 3757-3762.
  • Santos, C. & Ballesta, J.P.G. (1994) Ribosomal protein P0, contrary to phosphoproteins Pi and P2, is required for ribosome activity and Saccharomyces cerevisiae viability. J. Biol. Chem. 269, 15689-15696.
  • Schmitz, M.L., dos Santos Silva, M.A., Altmann, H., Czisch, M., Holak, T.A. & Baeuerler, P.A. (1994) Structural and functional analysis of the NF-kappa B p65 C terminus. An acidic and modular transactivation domain with the po­tential to adopt an alpha-helical conformation. J. Biol. Chem. 269, 25613-25620.
  • Sherman. F. (1991) Getting started with yeast. Methods EnzymoL 194, 3-21.
  • Tsurugi, K. & Mitsui, K. (1991) Bilateral hydro­phobic zipper as a hypothetical structure which binds acidic ribosomal protein family together on ribosomes in yeast Saccharomyces cerevisiae. Biochem. Biophys. Res. Comm. 174, 1318-1323.
  • Wool, I.G., Chan, Y.L., Gluck, A. & Suzuki, K. (1991) The primary structure of rat ribosomal proteins PO, PI, and P2 and a proposal for a uniform nomenclature for mammalian and yeast ribosomal proteins. Biochimie 73, 861-870.
  • Wool, I.G. (1996) Extraribosomal functions of ri­bosomal proteins. Trends Biochem. Sei. 21, 164-165.
  • Yacoub, A., Kelley, M.R. & Deutsch, W.A. (1996) Drosophila ribosomal protein PO contains apurinic/apyrimidinic endonuclease activity. Nucleic Acids Res. 24, 4298-4303.
  • Zurdo, J., Sanz, J.M., Gonzales, C., Rico, M. & Ballesta, J.P.G. (1997) The exchangeable yeast ribosomal acidic protein YP2beta shows char­acteristics of a partly folded state under physi­ological conditions. Biochemistry 36, 9625- 9635.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-664517ed-c765-40c4-9ead-c9314ef1270d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.